Data-driven prediction of the equivalent sand-grain roughness

被引:0
|
作者
Haoran Ma
Yuhao Li
Xin Yang
Lili Ye
机构
[1] Texas A&M University,Department of Ocean Engineering
[2] Texas A&M University,Department of Oceanography
[3] Wuhan University of Technology,School of Naval Architecture, Ocean and Energy Power Engineering
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Surface roughness affects the near-wall fluid velocity profile and surface drag, and is commonly quantified by the equivalent sand-grain roughness ks\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${k}_{s}$$\end{document}. It is essential to estimate ks\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${k}_{s}$$\end{document} for accurate fluid dynamic problem modeling. While numerous roughness correlation formulas have been proposed to predict ks\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${k}_{s}$$\end{document} in the fully rough regime, most of them are restricted to certain roughness types, with various geometric parameters considered in each case, leading to ongoing disagreements regarding its parameterization and lack of universality. In this study, a Particle Swarm Optimized Backpropagation (PSO-BP) method is proposed to predict ks\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${k}_{s}$$\end{document} based on the selected surface parameters from previous DNS, LES, and experimental results for flow behavior over various surface roughness. The PSO-BP model’s ability to predict ks\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${k}_{s}$$\end{document} in the fully rough region is evaluated and compared with both the existing roughness correction formulas as well as the traditional BP model. An optimized polynomial function is also proposed to serve as a ‘white box’ for predicting ks\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${k}_{s}$$\end{document}. It turns out that the PSO-BP method has better performance in the evaluation metrics compared to other methods, yielding a Mean Absolute Error (MAE) of 0.0390, a Mean Squared Error (MSE) of 0.0026 and a Mean Absolute Percentage Error (MAPE) of 28.12%. This novel approach for estimating ks\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${k}_{s}$$\end{document} has practical applicability and holds promise for improving the precision and efficiency of calculations related to equivalent sand-grain roughness, and thus provides more accurate and effective solutions for CFD and other engineering applications.
引用
收藏
相关论文
共 50 条
  • [41] Battery Safety: Data-Driven Prediction of Failure
    Finegan, Donal P.
    Cooper, Samuel J.
    [J]. JOULE, 2019, 3 (11) : 2599 - 2601
  • [42] A data-driven approach to RUL prediction of tools
    Li, Wei
    Zhang, Liang-Chi
    Wu, Chu-Han
    Wang, Yan
    Cui, Zhen-Xiang
    Niu, Chao
    [J]. ADVANCES IN MANUFACTURING, 2024, 12 (01) : 6 - 18
  • [43] Data-driven stuck pipe prediction and remedies
    Al Dushaishi, Mohammed F.
    Abbas, Ahmed K.
    Alsaba, Mortadha
    Abbas, Hayder
    Dawood, Jawad
    [J]. UPSTREAM OIL AND GAS TECHNOLOGY, 2021, 6
  • [44] Data-driven Chemical Reaction Prediction and Retrosynthesis
    Nair, Vishnu H.
    Schwaller, Philippe
    Laino, Teodoro
    [J]. CHIMIA, 2019, 73 (12) : 997 - 1000
  • [45] Data-Driven Models for Sewer Blockage Prediction
    Hassouna, Mohammed
    Reis, Marta
    Al Fairuz, Mohamed
    Tarhini, Ali
    [J]. 2019 INTERNATIONAL CONFERENCE ON COMPUTING, ELECTRONICS & COMMUNICATIONS ENGINEERING (ICCECE), 2019, : 68 - 72
  • [46] Towards Data-Driven Vulnerability Prediction for Requirements
    Imtiaz, Sayem Mohammad
    Bhowmik, Tanmay
    [J]. ESEC/FSE'18: PROCEEDINGS OF THE 2018 26TH ACM JOINT MEETING ON EUROPEAN SOFTWARE ENGINEERING CONFERENCE AND SYMPOSIUM ON THE FOUNDATIONS OF SOFTWARE ENGINEERING, 2018, : 744 - 748
  • [47] A data-driven approach to RUL prediction of tools
    Wei Li
    Liang-Chi Zhang
    Chu-Han Wu
    Yan Wang
    Zhen-Xiang Cui
    Chao Niu
    [J]. Advances in Manufacturing, 2024, 12 (1) : 6 - 18
  • [48] On the Limits of Data-Driven Cancer Prognosis Prediction
    Yousefi, Mohammadmahdi R.
    Dalton, Lori A.
    [J]. 2016 3RD IEEE EMBS INTERNATIONAL CONFERENCE ON BIOMEDICAL AND HEALTH INFORMATICS, 2016, : 537 - 540
  • [49] A Data-Driven Approach for Accurate Rainfall Prediction
    Manandhar, Shilpa
    Dev, Soumyabrata
    Lee, Yee Hui
    Meng, Yu Song
    Winkler, Stefan
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (11): : 9323 - 9331
  • [50] A General Data-Driven Algorithm for Lifetime Prediction
    Li, Qiao
    Lu, Ningyun
    Jiang, Bin
    [J]. 2013 25TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2013, : 2949 - 2954