In this paper we study the source-type solution for the heat equation with convection: \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$u_t = \Delta u + \vec b \cdot \nabla u^n$\end{document}
for (x, t) ∈ ST = ℝN × (0, T] and u(x, 0) = δ(x) for x ∈ ℝN, where δ(x) denotes Dirac measure in ℝN, N ⩾ 2, n ⩾ 0 and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\vec b = \left( {b_1 , \ldots ,b_N } \right) \in \mathbb{R}^N$\end{document}
is a vector. It is shown that there exists a critical number \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$p_c = \frac{{N + 2}}
{N}$\end{document}
such that the source-type solution to the above problem exists and is unique if 0 ⩽ n < pc and there exists a unique similarity source-type solution in the case \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$n = \frac{{N + 1}}
{N}$\end{document}
, while such a solution does not exist if n > pc. Moreover, the asymptotic behavior of the solution near the origin is studied. It is shown that when \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$0 < N < \frac{{N + 1}}
{N}$\end{document}
the convection is too weak and the short time behavior of the source-type solution near the origin is the same as that for the heat equation without convection.