Source-type solutions of heat equations with convection in several variables space

被引:0
|
作者
GuoFu Lu
HongMin Yin
机构
[1] Putian University,Institute of Applied Mathematics
[2] Washington State University,Department of Mathematics
来源
Science China Mathematics | 2011年 / 54卷
关键词
source-type solution; heat equation with convection; existence and nonexistence; 35K55; 35K65;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study the source-type solution for the heat equation with convection: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$u_t = \Delta u + \vec b \cdot \nabla u^n$\end{document} for (x, t) ∈ ST = ℝN × (0, T] and u(x, 0) = δ(x) for x ∈ ℝN, where δ(x) denotes Dirac measure in ℝN, N ⩾ 2, n ⩾ 0 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\vec b = \left( {b_1 , \ldots ,b_N } \right) \in \mathbb{R}^N$\end{document} is a vector. It is shown that there exists a critical number \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p_c = \frac{{N + 2}} {N}$\end{document} such that the source-type solution to the above problem exists and is unique if 0 ⩽ n < pc and there exists a unique similarity source-type solution in the case \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n = \frac{{N + 1}} {N}$\end{document} , while such a solution does not exist if n > pc. Moreover, the asymptotic behavior of the solution near the origin is studied. It is shown that when \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0 < N < \frac{{N + 1}} {N}$\end{document} the convection is too weak and the short time behavior of the source-type solution near the origin is the same as that for the heat equation without convection.
引用
收藏
页码:1145 / 1173
页数:28
相关论文
共 50 条