A Dirichlet–Neumann cost functional approach for the Bernoulli problem

被引:0
|
作者
A. Ben Abda
F. Bouchon
G. H. Peichl
M. Sayeh
R. Touzani
机构
[1] El Manar University,Laboratoire de Modélisation Mathématique et Numérique dans les Sciences de l’Ingénieur (LAMSIN)
[2] Clermont Université,Laboratoire de Mathématiques
[3] Université Blaise Pascal,Laboratoire de Mathématiques
[4] CNRS,Institute for Mathematics and Scientific Computing
[5] UMR 6620,undefined
[6] University of Graz,undefined
来源
关键词
Bernoulli problem; Domain perturbation; Free boundary; Level set method; Shape optimization; Shape derivative.;
D O I
暂无
中图分类号
学科分类号
摘要
The Bernoulli problem is rephrased into a shape optimization problem. In particular, the cost function, which turns out to be a constitutive law gap functional, is borrowed from inverse problem formulations. The shape derivative of the cost functional is explicitly determined. The gradient information is combined with the level set method in a steepest descent algorithm to solve the shape optimization problem. The efficiency of this approach is illustrated by numerical results for both interior and exterior Bernoulli problems.
引用
收藏
页码:157 / 176
页数:19
相关论文
共 50 条