On the hyperbolic Dirichlet to Neumann functional

被引:10
|
作者
Cardoso, F
Mendoza, R
机构
[1] Depto. de Matemática da UFPE
关键词
D O I
10.1080/03605309608821224
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:1235 / 1252
页数:18
相关论文
共 50 条
  • [1] Hyperbolic geometry and local Dirichlet-Neumann map
    Isozaki, H
    Uhlmann, G
    [J]. ADVANCES IN MATHEMATICS, 2004, 188 (02) : 294 - 314
  • [3] Stability estimates for the hyperbolic Dirichlet to Neumann map in anisotropic media
    Stefanov, P
    Uhlmann, G
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 1998, 154 (02) : 330 - 358
  • [4] Dirichlet–Neumann Problem in a Strip for Hyperbolic Equations with Constant Coefficients
    Ptashnyk B.Y.
    Repetylo S.M.
    [J]. Journal of Mathematical Sciences, 2015, 205 (4) : 501 - 517
  • [5] Dirichlet–Neumann Problem for Systems of Hyperbolic Equations with Constant Coefficients
    Ptashnyk B.Y.
    Repetylo S.M.
    [J]. Journal of Mathematical Sciences, 2016, 215 (1) : 26 - 35
  • [6] Uniqueness for the Dirichlet-Neumann elliptic functional
    Venegas, Pedro Gomez
    Mendoza, Ramon
    [J]. INVERSE PROBLEMS, 2006, 22 (05) : 1575 - 1578
  • [7] Weak solutions to hyperbolic problems with inhomogeneous Dirichlet and Neumann boundary conditions
    Sener, Sidika Sule
    Sarac, Yesim
    Subasi, Murat
    [J]. APPLIED MATHEMATICAL MODELLING, 2013, 37 (05) : 2623 - 2629
  • [8] A Dirichlet–Neumann cost functional approach for the Bernoulli problem
    A. Ben Abda
    F. Bouchon
    G. H. Peichl
    M. Sayeh
    R. Touzani
    [J]. Journal of Engineering Mathematics, 2013, 81 : 157 - 176
  • [9] Injectivity of the Dirichlet-to-Neumann Functional and the Schwarzian Derivative
    Silva, Fernando A. F. C.
    Venegas, Pedro A. G.
    Ahumada, Ramon O. M.
    [J]. ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 2010, 82 (04): : 813 - 822
  • [10] Mixed Dirichlet-Neumann-Cauchy problem for second order hyperbolic operators
    California State Univ at Long Beach, Long Beach, United States
    [J]. J Math Anal Appl, 1 (243-254):