Reconstruction of contact regions in semiconductor transistors using Dirichlet-Neumann cost functional approach

被引:5
|
作者
Hrizi, Mourad [1 ]
Hassine, Maatoug [1 ]
机构
[1] Monastir Univ, Fac Sci, Dept Math, Monastir, Tunisia
关键词
Inverse problem; noniterative reconstruction method; Kohn– Vogelius formulation; topological sensitivity analysis; topology optimization;
D O I
10.1080/00036811.2019.1623393
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the inverse problem of reconstructing an interior interface appearing in an elliptic equation in a bounded domain omega from the knowledge of the boundary measurements. This problem arises from a semiconductor transistor model. We propose a new shape reconstruction procedure that is based on the Kohn-Vogelius formulation and the topological sensitivity method. The inverse problem is formulated as a topology optimization one. A topological sensitivity analysis is derived from a function. The unknown contact interface is reconstructed using a level-set curve of the topological gradient. Finally, we give several examples to show the viability of our proposed method.
引用
收藏
页码:893 / 922
页数:30
相关论文
共 50 条
  • [1] A Dirichlet-Neumann cost functional approach for the Bernoulli problem
    Ben Abda, A.
    Bouchon, F.
    Peichl, G. H.
    Sayeh, M.
    Touzani, R.
    [J]. JOURNAL OF ENGINEERING MATHEMATICS, 2013, 81 (01) : 157 - 176
  • [2] Uniqueness for the Dirichlet-Neumann elliptic functional
    Venegas, Pedro Gomez
    Mendoza, Ramon
    [J]. INVERSE PROBLEMS, 2006, 22 (05) : 1575 - 1578
  • [3] DIRICHLET-NEUMANN BRACKETING FOR HORN-SHAPED REGIONS
    VANDENBERG, M
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 1992, 104 (01) : 110 - 120
  • [4] A Dirichlet-Neumann type algorithm for contact problems with friction
    Krause, Rolf H.
    Wohlmuth, Barbara I.
    [J]. Computing and Visualization in Science, 2002, 5 (03) : 139 - 148
  • [5] A new approach to analyticity of Dirichlet-Neumann operators
    Nicholls, DP
    Reitich, F
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2001, 131 : 1411 - 1433
  • [6] A stochastic approach to a multivalued Dirichlet-Neumann problem
    Maticiuc, Lucian
    Rascanu, Aurel
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2010, 120 (06) : 777 - 800
  • [7] PARAMETRIC ANALYTICITY OF FUNCTIONAL VARIATIONS OF DIRICHLET-NEUMANN OPERATORS
    Fazioli, Carlo
    Nicholls, David P.
    [J]. DIFFERENTIAL AND INTEGRAL EQUATIONS, 2008, 21 (5-6) : 541 - 574
  • [8] Stable computation of the functional variation of the Dirichlet-Neumann operator
    Fazioli, Carlo
    Nicholls, David P.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (03) : 906 - 920
  • [9] A Dirichlet–Neumann cost functional approach for the Bernoulli problem
    A. Ben Abda
    F. Bouchon
    G. H. Peichl
    M. Sayeh
    R. Touzani
    [J]. Journal of Engineering Mathematics, 2013, 81 : 157 - 176
  • [10] On the explicit reconstruction of a Riemann surface from its Dirichlet-Neumann operator
    Henkin, Gennadi
    Michel, Vincent
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 2007, 17 (01) : 116 - 155