Special factors, periodicity, and an application to Sturmian words

被引:0
|
作者
Arturo Carpi
Aldo de Luca
机构
[1] Istituto di Cibernetica del CNR,
[2] via Toiano 6,undefined
[3] 80072 Arco Felice (NA),undefined
[4] Italy (e-mail: arturo@arturo.cib.na.cnr.it) ,undefined
[5] Dipartimento di Matematica dell'Università di Roma ‘La Sapienza’,undefined
[6] piazzale Aldo Moro 2,undefined
[7] 00185 Roma,undefined
[8] Italy (e-mail: deluca@mercurio.mat.uniromA1.it) ,undefined
来源
Acta Informatica | 2000年 / 36卷
关键词
General Formula; Special Factor; Uniqueness Condition; Continue Fraction; Periodic Development;
D O I
暂无
中图分类号
学科分类号
摘要
Let w be a finite word and n the least non-negative integer such that w has no right special factor of length \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $n$\end{document} and its right factor of length n is unrepeated. We prove that if all the factors of another word v up to the length n + 1 are also factors of w, thenv itself is a factor ofw. A similar result for ultimately periodic infinite words is established. As a consequence, some ‘uniqueness conditions’ for ultimately periodic words are obtained as well as an upper bound for the rational exponents of the factors of uniformly recurrent non-periodic infinite words. A general formula is derived for the ‘critical exponent’ of a power-free Sturmian word. In particular, we effectively compute the ‘critical exponent’ of any Sturmian sequence whose slope has a periodic development in a continued fraction.
引用
收藏
页码:983 / 1006
页数:23
相关论文
共 50 条