Special factors, periodicity, and an application to Sturmian words

被引:0
|
作者
Arturo Carpi
Aldo de Luca
机构
[1] Istituto di Cibernetica del CNR,
[2] via Toiano 6,undefined
[3] 80072 Arco Felice (NA),undefined
[4] Italy (e-mail: arturo@arturo.cib.na.cnr.it) ,undefined
[5] Dipartimento di Matematica dell'Università di Roma ‘La Sapienza’,undefined
[6] piazzale Aldo Moro 2,undefined
[7] 00185 Roma,undefined
[8] Italy (e-mail: deluca@mercurio.mat.uniromA1.it) ,undefined
来源
Acta Informatica | 2000年 / 36卷
关键词
General Formula; Special Factor; Uniqueness Condition; Continue Fraction; Periodic Development;
D O I
暂无
中图分类号
学科分类号
摘要
Let w be a finite word and n the least non-negative integer such that w has no right special factor of length \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $n$\end{document} and its right factor of length n is unrepeated. We prove that if all the factors of another word v up to the length n + 1 are also factors of w, thenv itself is a factor ofw. A similar result for ultimately periodic infinite words is established. As a consequence, some ‘uniqueness conditions’ for ultimately periodic words are obtained as well as an upper bound for the rational exponents of the factors of uniformly recurrent non-periodic infinite words. A general formula is derived for the ‘critical exponent’ of a power-free Sturmian word. In particular, we effectively compute the ‘critical exponent’ of any Sturmian sequence whose slope has a periodic development in a continued fraction.
引用
收藏
页码:983 / 1006
页数:23
相关论文
共 50 条
  • [21] Sturmian words:: Dynamical systems and derivated words
    Araújo, IM
    Bruyère, V
    DEVELOPMENTS IN LANGUAGE THEORY, PROCEEDINGS, 2005, 3572 : 122 - 133
  • [22] Bifix codes and Sturmian words
    Berstel, Jean
    De Felice, Clelia
    Perrin, Dominique
    Reutenauer, Christophe
    Rindone, Giuseppina
    JOURNAL OF ALGEBRA, 2012, 369 : 146 - 202
  • [23] Rich, Sturmian, and trapezoidal words
    de Luca, Aldo
    Glen, Amy
    Zamboni, Luca Q.
    THEORETICAL COMPUTER SCIENCE, 2008, 407 (1-3) : 569 - 573
  • [24] On the permutations generated by Sturmian words
    M. A. Makarov
    Siberian Mathematical Journal, 2009, 50 : 674 - 680
  • [25] Words and morphisms with Sturmian erasures
    Durand, F
    Guerziz, A
    Koskas, M
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2004, 11 (04) : 575 - 588
  • [26] The Number of Cubes in Sturmian Words
    Piatkowski, Marcin
    Rytter, Wojciech
    PROCEEDINGS OF THE PRAGUE STRINGOLOGY CONFERENCE 2012, 2012, : 89 - 102
  • [27] Abelian returns in Sturmian words
    Puzynina, Svetlana
    Zamboni, Luca Q.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2013, 120 (02) : 390 - 408
  • [28] The number of runs in Sturmian words
    Baturo, Pawel
    Pitakowski, Marcin
    Rytter, Wojciech
    IMPLEMENTATION AND APPLICATION OF AUTOMATA, PROCEEDINGS, 2008, 5148 : 252 - 261
  • [29] A Characterization of Bispecial Sturmian Words
    Fici, Gabriele
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2012, 2012, 7464 : 383 - 394
  • [30] On Minimal Sturmian Partial Words
    Blanchet-Sadri, Francine
    Lensmire, John
    28TH INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS 2011), 2011, 9 : 225 - 236