Special factors, periodicity, and an application to Sturmian words

被引:0
|
作者
Arturo Carpi
Aldo de Luca
机构
[1] Istituto di Cibernetica del CNR,
[2] via Toiano 6,undefined
[3] 80072 Arco Felice (NA),undefined
[4] Italy (e-mail: arturo@arturo.cib.na.cnr.it) ,undefined
[5] Dipartimento di Matematica dell'Università di Roma ‘La Sapienza’,undefined
[6] piazzale Aldo Moro 2,undefined
[7] 00185 Roma,undefined
[8] Italy (e-mail: deluca@mercurio.mat.uniromA1.it) ,undefined
来源
Acta Informatica | 2000年 / 36卷
关键词
General Formula; Special Factor; Uniqueness Condition; Continue Fraction; Periodic Development;
D O I
暂无
中图分类号
学科分类号
摘要
Let w be a finite word and n the least non-negative integer such that w has no right special factor of length \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $n$\end{document} and its right factor of length n is unrepeated. We prove that if all the factors of another word v up to the length n + 1 are also factors of w, thenv itself is a factor ofw. A similar result for ultimately periodic infinite words is established. As a consequence, some ‘uniqueness conditions’ for ultimately periodic words are obtained as well as an upper bound for the rational exponents of the factors of uniformly recurrent non-periodic infinite words. A general formula is derived for the ‘critical exponent’ of a power-free Sturmian word. In particular, we effectively compute the ‘critical exponent’ of any Sturmian sequence whose slope has a periodic development in a continued fraction.
引用
收藏
页码:983 / 1006
页数:23
相关论文
共 50 条
  • [1] Special factors, periodicity, and an application to Sturmian words
    Carpi, A
    de Luca, A
    ACTA INFORMATICA, 2000, 36 (12) : 983 - 1006
  • [2] STANDARD FACTORS OF STURMIAN WORDS
    Richomme, Gwenael
    Saari, Kalle
    Zamboni, Luca Q.
    RAIRO-THEORETICAL INFORMATICS AND APPLICATIONS, 2010, 44 (01): : 159 - 174
  • [3] ON THE NUMBER OF FACTORS OF STURMIAN WORDS
    MIGNOSI, F
    THEORETICAL COMPUTER SCIENCE, 1991, 82 (01) : 71 - 84
  • [4] Lyndon words and singular factors of sturmian words
    Melançon, G
    THEORETICAL COMPUTER SCIENCE, 1999, 218 (01) : 41 - 59
  • [5] Partitioned factors in Christoffel and Sturmian words
    Carey, Norman
    Clampitt, David
    THEORETICAL COMPUTER SCIENCE, 2018, 743 : 53 - 63
  • [6] Abelian periods of factors of Sturmian words
    Peltomaki, Jarkko
    JOURNAL OF NUMBER THEORY, 2020, 214 : 251 - 285
  • [7] Variety and multiplicity for partitioned factors in Christoffel and Sturmian words
    Carey, Norman
    Clampitt, David
    JOURNAL OF MATHEMATICS AND MUSIC, 2018, 12 (03) : 154 - 170
  • [8] On substitution invariant sturmian words:: An application of rauzy fractals
    Berthe, Valerie
    Ei, Hiromi
    Ito, Shunji
    Rao, Hui
    RAIRO-THEORETICAL INFORMATICS AND APPLICATIONS, 2007, 41 (03): : 329 - 349
  • [9] Return words in Sturmian and Episturmian words
    Justin, J
    Vuillon, L
    RAIRO-INFORMATIQUE THEORIQUE ET APPLICATIONS-THEORETICAL INFORMATICS AND APPLICATIONS, 2000, 34 (05): : 343 - 356
  • [10] Palindromes in Sturmian words
    de Luca, A
    De Luca, A
    DEVELOPMENTS IN LANGUAGE THEORY, PROCEEDINGS, 2005, 3572 : 199 - 208