Eigenfunction Statistics for a Point Scatterer on a Three-Dimensional Torus

被引:0
|
作者
Nadav Yesha
机构
[1] Tel Aviv University,Raymond and Beverly Sackler School of Mathematical Sciences
来源
Annales Henri Poincaré | 2013年 / 14卷
关键词
Prime Ideal; Integer Solution; Point Scatterer; Algebraic Number Theory; Flat Torus;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study eigenfunction statistics for a point scatterer (the Laplacian perturbed by a delta-potential) on a three-dimensional flat torus. The eigenfunctions of this operator are the eigenfunctions of the Laplacian which vanish at the scatterer, together with a set of new eigenfunctions (perturbed eigenfunctions). We first show that for a point scatterer on the standard torus all of the perturbed eigenfunctions are uniformly distributed in configuration space. Then we investigate the same problem for a point scatterer on a flat torus with some irrationality conditions, and show uniform distribution in configuration space for almost all of the perturbed eigenfunctions.
引用
收藏
页码:1801 / 1836
页数:35
相关论文
共 50 条
  • [21] Three-dimensional shape statistics: Applications
    Luo, S
    Vishniac, ET
    Martel, H
    [J]. ASTROPHYSICAL JOURNAL, 1996, 468 (01): : 62 - 74
  • [22] Statistics of three-dimensional Lagrangian turbulence
    Beck, Christian
    [J]. PHYSICAL REVIEW LETTERS, 2007, 98 (06)
  • [23] Three-dimensional statistics of radio polarimetry
    McKinnon, MM
    [J]. ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2003, 148 (02): : 519 - 526
  • [24] Three-Dimensional Point Groups
    Farley, Daniel Scott
    Ortiz, Ivonne Johanna
    [J]. ALGEBRAIC K-THEORY OF CRYSTALLOGRAPHIC GROUPS: THE THREE-DIMENSIONAL SPLITTING CASE, 2014, 2113 : 9 - 21
  • [25] Broadcastings and digit tilings on three-dimensional torus networks
    Okazaki, Ryotaro
    Ono, Hirotaka
    Sadahiro, Taizo
    Yamashita, Masafumi
    [J]. THEORETICAL COMPUTER SCIENCE, 2011, 412 (4-5) : 307 - 319
  • [26] Three-Dimensional Particle Acceleration in Electromagnetic Cylinder and Torus
    Koichi Noguchi
    Edison Liang
    [J]. Astrophysics and Space Science, 2007, 307 : 305 - 308
  • [27] Approximate Controllability of the Magnetohydrodynamic Equations on the Three-Dimensional Torus
    Galan, Ioana Catalina
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2013, 159 (01) : 231 - 245
  • [28] Modeling of three-dimensional camera imaging in a tokamak torus
    Edmonds, PH
    Medley, SS
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 1997, 68 (01): : 918 - 921
  • [29] Computation of three-dimensional tokamak and spherical torus equilibria
    Park, Jong-Kyu
    Boozer, Allen H.
    Glasser, Alan H.
    [J]. PHYSICS OF PLASMAS, 2007, 14 (05)
  • [30] A simple three-dimensional quadratic flow with an attracting torus
    Mehrabbeik, Mahtab
    Jafari, Sajad
    Sprott, Julien Clinton
    [J]. PHYSICS LETTERS A, 2022, 451