Broadcastings and digit tilings on three-dimensional torus networks

被引:1
|
作者
Okazaki, Ryotaro [2 ]
Ono, Hirotaka [3 ]
Sadahiro, Taizo [1 ,4 ]
Yamashita, Masafumi
机构
[1] Prefectural Univ Kumamoto, Dept Adm, Kumamoto 8628502, Japan
[2] Doshisha Univ, Dept Math Sci, Kyoto 6100394, Japan
[3] Kyushu Univ, Dept Econ Engn, Higashi Ku, Fukuoka 8128581, Japan
[4] Kyushu Univ, Dept Informat, Nishi Ku, Fukuoka 8190395, Japan
关键词
Broadcasting; Torus network; Self-affine tiling; Numeration system;
D O I
10.1016/j.tcs.2010.09.028
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A tiling in a finite abelian group H is a pair (T, L) of subsets of H such that any h epsilon H can be uniquely represented as t + I where t epsilon T and I epsilon L. This paper studies a finite analogue of self-affine tilings in Euclidean spaces and applies it to a problem of broadcasting on circuit switched networks. We extend the tiling argument of Peters and Syska [Joseph G. Peters, Michel Syska, Circuit switched broadcasting in torus networks, IEEE Trans. Parallel Distrib. Syst., 7 (1996) 246-255] to 3-dimensional torus networks. (c) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:307 / 319
页数:13
相关论文
共 50 条
  • [1] ON THE CONNECTIVITY OF SPACES OF THREE-DIMENSIONAL DOMINO TILINGS
    Freire, Juliana
    Klivans, Caroline
    Milet, Pedro
    Saldanha, Nicolau
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 375 (03) : 1579 - 1605
  • [2] Flip dynamics in three-dimensional random tilings
    Desoutter, V
    Destainville, N
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (01): : 17 - 45
  • [3] Random three-dimensional tilings of Aztec octahedra and tetrahedra: An extension of domino tilings
    Randall, D
    Yngve, G
    [J]. PROCEEDINGS OF THE ELEVENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2000, : 636 - 645
  • [4] On the destabilization of a periodically driven three-dimensional torus
    S. Euzzor
    A. Di Garbo
    J.-M. Ginoux
    S. Zambrano
    F. T. Arecchi
    R. Meucci
    [J]. Nonlinear Dynamics, 2021, 103 : 1969 - 1977
  • [5] On the destabilization of a periodically driven three-dimensional torus
    Euzzor, S.
    Di Garbo, A.
    Ginoux, J-M
    Zambrano, S.
    Arecchi, F. T.
    Meucci, R.
    [J]. NONLINEAR DYNAMICS, 2021, 103 (02) : 1969 - 1977
  • [6] Three-dimensional representations of punctured torus bundles
    Mangum, B
    Shanahan, P
    [J]. JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 1997, 6 (06) : 817 - 825
  • [7] Some novel three-dimensional Euclidean crystalline networks derived from two-dimensional hyperbolic tilings
    S.T. Hyde
    S. Ramsden
    [J]. The European Physical Journal B - Condensed Matter and Complex Systems, 2003, 31 : 273 - 284
  • [8] Some novel three-dimensional Euclidean crystalline networks derived from two-dimensional hyperbolic tilings
    Hyde, ST
    Ramsden, S
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2003, 31 (02): : 273 - 284
  • [9] Quantum dynamics in two- and three-dimensional quasiperiodic tilings
    Triozon, F
    Vidal, J
    Mosseri, R
    Mayou, D
    [J]. PHYSICAL REVIEW B, 2002, 65 (22): : 2202021 - 2202024
  • [10] Three-Dimensional Particle Acceleration in Electromagnetic Cylinder and Torus
    Koichi Noguchi
    Edison Liang
    [J]. Astrophysics and Space Science, 2007, 307 : 305 - 308