Broadcastings and digit tilings on three-dimensional torus networks

被引:1
|
作者
Okazaki, Ryotaro [2 ]
Ono, Hirotaka [3 ]
Sadahiro, Taizo [1 ,4 ]
Yamashita, Masafumi
机构
[1] Prefectural Univ Kumamoto, Dept Adm, Kumamoto 8628502, Japan
[2] Doshisha Univ, Dept Math Sci, Kyoto 6100394, Japan
[3] Kyushu Univ, Dept Econ Engn, Higashi Ku, Fukuoka 8128581, Japan
[4] Kyushu Univ, Dept Informat, Nishi Ku, Fukuoka 8190395, Japan
关键词
Broadcasting; Torus network; Self-affine tiling; Numeration system;
D O I
10.1016/j.tcs.2010.09.028
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A tiling in a finite abelian group H is a pair (T, L) of subsets of H such that any h epsilon H can be uniquely represented as t + I where t epsilon T and I epsilon L. This paper studies a finite analogue of self-affine tilings in Euclidean spaces and applies it to a problem of broadcasting on circuit switched networks. We extend the tiling argument of Peters and Syska [Joseph G. Peters, Michel Syska, Circuit switched broadcasting in torus networks, IEEE Trans. Parallel Distrib. Syst., 7 (1996) 246-255] to 3-dimensional torus networks. (c) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:307 / 319
页数:13
相关论文
共 50 条
  • [31] Flip Invariance for Domino Tilings of Three-Dimensional Regions with Two Floors
    Milet, Pedro H.
    Saldanha, Nicolau C.
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2015, 53 (04) : 914 - 940
  • [32] Flip Invariance for Domino Tilings of Three-Dimensional Regions with Two Floors
    Pedro H. Milet
    Nicolau C. Saldanha
    [J]. Discrete & Computational Geometry, 2015, 53 : 914 - 940
  • [33] Measurement of global instability of compact torus by three-dimensional tomography
    Kawamori, E.
    Sumikawa, T.
    Ono, Y.
    Balandin, A.
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2006, 77 (09):
  • [34] Three-dimensional modelling of EUVE observations of the Io plasma torus
    Thomas, N
    Innes, DE
    Lieu, R
    [J]. ASTROPHYSICS IN THE EXTREME ULTRAVIOLET, 1996, : 457 - 464
  • [35] Three-dimensional simulations of blob dynamics in a simple magnetized torus
    Halpern, Federico D.
    Cardellini, Annalisa
    Ricci, Paolo
    Jolliet, Sebastien
    Loizu, Joaquim
    Mosetto, Annamaria
    [J]. PHYSICS OF PLASMAS, 2014, 21 (02)
  • [36] Broadcasting Algorithms of Three-Dimensional Petersen-Torus Network
    Kim, Jong-Seok
    Lee, Hyeong-Ok
    Kim, Mihye
    Kim, Sung Won
    [J]. JOURNAL OF APPLIED MATHEMATICS, 2014,
  • [37] Phases of three-dimensional large N QCD on a continuum torus
    Narayanan, R.
    Neuberger, H.
    Reynoso, F.
    [J]. PHYSICS LETTERS B, 2007, 651 (2-3) : 246 - 252
  • [38] Chaos of 'split torus' type in three-dimensional relaxation systems
    Kolesov, AY
    Kolesov, YS
    Rozov, NK
    [J]. SBORNIK MATHEMATICS, 1997, 188 (11-12) : 1571 - 1586
  • [39] Improving the performance of global communication on a three-dimensional torus network
    Kawakura, Y
    Tanabe, N
    Oyanagi, S
    [J]. SYSTEMS AND COMPUTERS IN JAPAN, 1996, 27 (06) : 24 - 32
  • [40] INVARIANT MANIFOLDS FOR THE NONAUTONOMOUS BOISSONADE SYSTEM IN THREE-DIMENSIONAL TORUS
    Liu, Na
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2021, 11 (06): : 3133 - 3156