Lacticaseibacillus paracasei K56 Attenuates High-Fat Diet-Induced Obesity by Modulating the Gut Microbiota in Mice

被引:0
|
作者
Zhonghua Miao
Hanying Zheng
Wei-Hsien Liu
Ruyue Cheng
Hui Lan
Ting Sun
Wen Zhao
Jinxing Li
Xi Shen
Hongwei Li
Haotian Feng
Wei-Lian Hung
Fang He
机构
[1] Sichuan University,Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital
[2] Xiamen University,School of Public Health
[3] Inner Mongolia Yili Industrial Group Co.,undefined
[4] Ltd,undefined
来源
关键词
Obesity; Gut microbiota; Probiotics; High-fat diet;
D O I
暂无
中图分类号
学科分类号
摘要
This study investigated the effects of Lacticaseibacillus paracasei K56 (L. paracasei K56) on body weight, body composition, and glycolipid metabolism in mice with high-fat diet-induced obesity and explored the underlying mechanisms. Male C57BL/6J mice were fed a high-fat diet for 8 weeks to induce obesity; then, the obese mice were gavaged with or without L. paracasei K56 for 10 weeks. The body weight, body composition, fat mass, blood lipid, blood glucose, and hormones of the mice were evaluated. Moreover, the fatty acid synthesis (FAS) and peroxisome proliferator-activated receptor γ (PPAR-γ) expressions in the liver were detected via Western blotting. 16S rRNA gene sequencing was adopted to determine the gut microbiota alterations. The high-fat diet successfully induced obesity, as indicated by the abnormal increase in body weight, visceral fat, fat mass, blood lipids, fasting blood glucose, and insulin-resistance. Moreover, the FAS expression in the liver was significantly increased, whereas the PPAR-γ expression was significantly decreased. The relative abundance of Proteobacteria, Actinobacteria and Patescibacteria was also significantly increased, and that of Verrucomicrobia was significantly decreased. However, these indicators of mice supplemented with L. paracasei K56 were significantly opposite to those of obese mice. The Ruminococcuaceae_UCG-013, Akkermansia, Prevotellaceae_UCG-001, Muribaculum, and Lachnospiraceae_NK4A136 groups were significantly negatively correlated with body weight, blood lipids, and blood glucose-related indicators, whereas Coriobacteriaceae_UCG-002, Enterorhabdus, Raoultibacter, Acinetobacter, Romboutsia, Leuconostoc, and Erysipelatoclostridium were significantly positively correlated with these indicators. L. paracasei K56 might be a promising probiotic strain that could effectively slow down the body weight gain, reduce fat accumulation, alleviate insulin-resistance, and restore pancreatic β-cell function in obese mice by regulating the gut microbiota.
引用
收藏
页码:844 / 855
页数:11
相关论文
共 50 条
  • [31] High-Fat Diet-Induced Decreased Circulating Bile Acids Contribute to Obesity Associated with Gut Microbiota in Mice
    Cai, Haiying
    Zhang, Junhui
    Liu, Chang
    Le, Thanh Ninh
    Lu, Yuyun
    Feng, Fengqin
    Zhao, Minjie
    [J]. FOODS, 2024, 13 (05)
  • [32] Dendrobium officinale alleviates high-fat diet-induced nonalcoholic steatohepatitis by modulating gut microbiota
    Tian, Gege
    Wang, Wei
    Xia, Enrui
    Chen, Wenhui
    Zhang, Shunzhen
    [J]. FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY, 2023, 13
  • [33] Supplementation with Sodium Butyrate Modulates the Composition of the Gut Microbiota and Ameliorates High-Fat Diet-Induced Obesity in Mice
    Fang, Wanjun
    Xue, Hongliang
    Chen, Xu
    Chen, Ke
    Ling, Wenhua
    [J]. JOURNAL OF NUTRITION, 2019, 149 (05): : 747 - 754
  • [34] Curcumin alleviates high-fat diet-induced hepatic steatosis and obesity in association with modulation of gut microbiota in mice
    Li, Shuo
    You, Jinming
    Wang, Zirui
    Liu, Yue
    Wang, Bo
    Du, Min
    Zou, Tiande
    [J]. Food Research International, 2021, 143
  • [35] Fuzhuan Brick Tea Attenuates High-Fat Diet-Induced Obesity and Associated Metabolic Disorders by Shaping Gut Microbiota
    Liu, Dongmin
    Huang, Jianan
    Luo, Yong
    Wen, Beibei
    Wu, Wenliang
    Zeng, Hongliang
    Liu Zhonghua
    [J]. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2019, 67 (49) : 13589 - 13604
  • [36] Curcumin alleviates high-fat diet-induced hepatic steatosis and obesity in association with modulation of gut microbiota in mice
    Li, Shuo
    You, Jinming
    Wang, Zirui
    Liu, Yue
    Wang, Bo
    Du, Min
    Zou, Tiande
    [J]. FOOD RESEARCH INTERNATIONAL, 2021, 143
  • [37] Asparagus cochinchinensis alleviates disturbances of lipid metabolism and gut microbiota in high-fat diet-induced obesity mice
    Luo, Shiyue
    Zhou, Lixiao
    Jiang, Xuejun
    Xia, Yinyin
    Huang, Lishuang
    Ling, Run
    Tang, Shixin
    Zou, Zhen
    Chen, Chengzhi
    Qiu, Jingfu
    [J]. FRONTIERS IN PHARMACOLOGY, 2022, 13
  • [38] Propensity to high-fat diet-induced obesity in rats is associated with changes in the gut microbiota and gut inflammation
    de La Serre, Claire Barbier
    Ellis, Collin L.
    Lee, Jennifer
    Hartman, Amber L.
    Rutledge, John C.
    Raybould, Helen E.
    [J]. AMERICAN JOURNAL OF PHYSIOLOGY-GASTROINTESTINAL AND LIVER PHYSIOLOGY, 2010, 299 (02): : G440 - G448
  • [39] Lactobacillus plantarum FRT4 alleviated obesity by modulating gut microbiota and liver metabolome in high-fat diet-induced obese mice
    Cai, Hongying
    Wen, Zhiguo
    Zhao, Lulu
    Yu, Dali
    Meng, Kun
    Yang, Peilong
    [J]. FOOD & NUTRITION RESEARCH, 2022, 66
  • [40] Perturbation on gut microbiota impedes the onset of obesity in high fat diet-induced mice
    Yu, Zhongjia
    Yu, Xiang-Fang
    Kerem, Goher
    Ren, Pei-Gen
    [J]. FRONTIERS IN ENDOCRINOLOGY, 2022, 13