Propensity to high-fat diet-induced obesity in rats is associated with changes in the gut microbiota and gut inflammation

被引:696
|
作者
de La Serre, Claire Barbier [1 ]
Ellis, Collin L. [2 ]
Lee, Jennifer [1 ]
Hartman, Amber L. [3 ]
Rutledge, John C. [2 ]
Raybould, Helen E. [1 ]
机构
[1] Univ Calif Davis, Sch Vet Med, Dept Anat Physiol & Cell Biol, Davis, CA 95616 USA
[2] Univ Calif Davis, Dept Internal Med, Sch Med, Davis, CA 95616 USA
[3] Univ Calif Davis, Genome Ctr, Davis, CA 95616 USA
基金
美国国家卫生研究院;
关键词
diet-induced obesity; endotoxin; toll-like receptor-4; Enterobacteriales; Bacteroidales; Clostridiales; INTESTINAL ALKALINE-PHOSPHATASE; INSULIN-RESISTANCE; NEUTROPHIL CONTENT; MICE; ENDOTOXEMIA; MICROFLORA; MECHANISMS; RECEPTOR; ENERGY; PATHOGENESIS;
D O I
10.1152/ajpgi.00098.2010
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
Barbier de La Serre C, Ellis CL, Lee J, Hartman AL, Rutledge JC, Raybould HE. Propensity to high-fat diet-induced obesity in rats is associated with changes in the gut microbiota and gut inflammation. Am J Physiol Gastrointest Liver Physiol 299: G440-G448, 2010. First published May 27, 2010; doi: 10.1152/ajpgi.00098.2010.-Consumption of diets high in fat and calories leads to hyperphagia and obesity, which is associated with chronic "low-grade" systemic inflammation. Ingestion of a high-fat diet alters the gut microbiota, pointing to a possible role in the development of obesity. The present study used Sprague-Dawley rats that, when fed a high-fat diet, exhibit either an obesity-prone (DIO-P) or obesity-resistant (DIO-R) phenotype, to determine whether changes in gut epithelial function and microbiota are diet or obese associated. Food intake and body weight were monitored daily in rats maintained on either low-or high-fat diets. After 8 or 12 wk, tissue was removed to determine adiposity and gut epithelial function and to analyze the gut microbiota using PCR. DIO-P but not DIO-R rats exhibit an increase in toll-like receptor (TLR4) activation associated with ileal inflammation and a decrease in intestinal alkaline phosphatase, a luminal enzyme that detoxifies lipopolysaccharide (LPS). Intestinal permeability and plasma LPS were increased together with phosphorylation of myosin light chain and localization of occludin in the cytoplasm of epithelial cells. Measurement of bacterial 16S rRNA showed a decrease in total bacterial density and an increase in the relative proportion of Bacteroidales and Clostridiales orders in high-fat-fed rats regardless of phenotype; an increase in Enterobacteriales was seen in the microbiota of DIO-P rats only. Consumption of a high-fat diet induces changes in the gut microbiota, but it is the development of inflammation that is associated with the appearance of hyperphagia and an obese phenotype.
引用
收藏
页码:G440 / G448
页数:9
相关论文
共 50 条
  • [1] Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice
    Cani, Patrice D.
    Bibiloni, Rodrigo
    Knauf, Claude
    Neyrinck, Audrey M.
    Neyrinck, Audrey M.
    Delzenne, Nathalle M.
    Burcelin, Remy
    [J]. DIABETES, 2008, 57 (06) : 1470 - 1481
  • [2] Modulation of gut microbiota by berberine and metformin during the treatment of high-fat diet-induced obesity in rats
    Zhang, Xu
    Zhao, Yufeng
    Xu, Jia
    Xue, Zhengsheng
    Zhang, Menghui
    Pang, Xiaoyan
    Zhang, Xiaojun
    Zhao, Liping
    [J]. SCIENTIFIC REPORTS, 2015, 5
  • [3] Modulation of gut microbiota by berberine and metformin during the treatment of high-fat diet-induced obesity in rats
    Xu Zhang
    Yufeng Zhao
    Jia Xu
    Zhengsheng Xue
    Menghui Zhang
    Xiaoyan Pang
    Xiaojun Zhang
    Liping Zhao
    [J]. Scientific Reports, 5
  • [4] Suppression of High-Fat Diet-Induced Obesity by Platycodon Grandiflorus in Mice Is Linked to Changes in the Gut Microbiota
    Ke, Weixin
    Bonilla-Rosso, German
    Engel, Philipp
    Wang, Pan
    Chen, Fang
    Hu, Xiaosong
    [J]. JOURNAL OF NUTRITION, 2020, 150 (09): : 2364 - 2374
  • [5] Effects of high-fat diet-induced gut microbiota dysbiosis: far beyond the gut
    Liu, Tianyu
    Wang, Bangmao
    Cao, Hailong
    [J]. GUT, 2020, 69 (12) : 2259 - 2259
  • [6] High-Fat Diet-Induced Decreased Circulating Bile Acids Contribute to Obesity Associated with Gut Microbiota in Mice
    Cai, Haiying
    Zhang, Junhui
    Liu, Chang
    Le, Thanh Ninh
    Lu, Yuyun
    Feng, Fengqin
    Zhao, Minjie
    [J]. FOODS, 2024, 13 (05)
  • [7] Sciadonic acid attenuates high-fat diet-induced obesity in mice with alterations in the gut microbiota
    Chen, Lin
    Jiang, Qihong
    Jiang, Chenkai
    Lu, Hongling
    Hu, Wenjun
    Yu, Shaofang
    Li, Mingqian
    Tan, Chin Ping
    Feng, Yongcai
    Xiang, Xingwei
    Shen, Guoxin
    [J]. FOOD & FUNCTION, 2023, 14 (06) : 2870 - 2880
  • [8] Salidroside protects mice from high-fat diet-induced obesity by modulating the gut microbiota
    Liu, Jiuxi
    Cai, Jiapei
    Zhang, Naisheng
    Tai, Jiandong
    Fan, Peng
    Dong, Xue
    Cao, Yongguo
    [J]. INTERNATIONAL IMMUNOPHARMACOLOGY, 2023, 120
  • [9] Effects of high-fat diet-induced gut microbiota dysbiosis: far beyond the gut Reply
    Ding, Ning
    Li, Fang Hong
    Yao, Bing
    Mu, Yun Ping
    Zhao, Allan Z.
    [J]. GUT, 2020, 69 (12)
  • [10] Compositional Changes of the High-Fat Diet-Induced Gut Microbiota upon Consumption of Common Pulses
    Lutsiv, Tymofiy
    Weir, Tiffany L.
    McGinley, John N.
    Neil, Elizabeth S.
    Wei, Yuren
    Thompson, Henry J.
    [J]. NUTRIENTS, 2021, 13 (11)