Propensity to high-fat diet-induced obesity in rats is associated with changes in the gut microbiota and gut inflammation

被引:696
|
作者
de La Serre, Claire Barbier [1 ]
Ellis, Collin L. [2 ]
Lee, Jennifer [1 ]
Hartman, Amber L. [3 ]
Rutledge, John C. [2 ]
Raybould, Helen E. [1 ]
机构
[1] Univ Calif Davis, Sch Vet Med, Dept Anat Physiol & Cell Biol, Davis, CA 95616 USA
[2] Univ Calif Davis, Dept Internal Med, Sch Med, Davis, CA 95616 USA
[3] Univ Calif Davis, Genome Ctr, Davis, CA 95616 USA
基金
美国国家卫生研究院;
关键词
diet-induced obesity; endotoxin; toll-like receptor-4; Enterobacteriales; Bacteroidales; Clostridiales; INTESTINAL ALKALINE-PHOSPHATASE; INSULIN-RESISTANCE; NEUTROPHIL CONTENT; MICE; ENDOTOXEMIA; MICROFLORA; MECHANISMS; RECEPTOR; ENERGY; PATHOGENESIS;
D O I
10.1152/ajpgi.00098.2010
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
Barbier de La Serre C, Ellis CL, Lee J, Hartman AL, Rutledge JC, Raybould HE. Propensity to high-fat diet-induced obesity in rats is associated with changes in the gut microbiota and gut inflammation. Am J Physiol Gastrointest Liver Physiol 299: G440-G448, 2010. First published May 27, 2010; doi: 10.1152/ajpgi.00098.2010.-Consumption of diets high in fat and calories leads to hyperphagia and obesity, which is associated with chronic "low-grade" systemic inflammation. Ingestion of a high-fat diet alters the gut microbiota, pointing to a possible role in the development of obesity. The present study used Sprague-Dawley rats that, when fed a high-fat diet, exhibit either an obesity-prone (DIO-P) or obesity-resistant (DIO-R) phenotype, to determine whether changes in gut epithelial function and microbiota are diet or obese associated. Food intake and body weight were monitored daily in rats maintained on either low-or high-fat diets. After 8 or 12 wk, tissue was removed to determine adiposity and gut epithelial function and to analyze the gut microbiota using PCR. DIO-P but not DIO-R rats exhibit an increase in toll-like receptor (TLR4) activation associated with ileal inflammation and a decrease in intestinal alkaline phosphatase, a luminal enzyme that detoxifies lipopolysaccharide (LPS). Intestinal permeability and plasma LPS were increased together with phosphorylation of myosin light chain and localization of occludin in the cytoplasm of epithelial cells. Measurement of bacterial 16S rRNA showed a decrease in total bacterial density and an increase in the relative proportion of Bacteroidales and Clostridiales orders in high-fat-fed rats regardless of phenotype; an increase in Enterobacteriales was seen in the microbiota of DIO-P rats only. Consumption of a high-fat diet induces changes in the gut microbiota, but it is the development of inflammation that is associated with the appearance of hyperphagia and an obese phenotype.
引用
收藏
页码:G440 / G448
页数:9
相关论文
共 50 条
  • [41] Gochujang Ameliorates Hepatic Inflammation by Improving Dysbiosis of Gut Microbiota in High-Fat Diet-Induced Obese Mice
    Lee, Eun-Ji
    Edward, Olivet Chiamaka
    Seo, Eun-Bi
    Mun, Eun-Gyung
    Jeong, Su-Ji
    Ha, Gwangsu
    Han, Anna
    Cha, Youn-Soo
    [J]. MICROORGANISMS, 2023, 11 (04)
  • [42] Celastrol inhibits intestinal lipid absorption by reprofiling the gut microbiota to attenuate high-fat diet-induced obesity
    Hua, Hu
    Zhang, Yue
    Zhao, Fei
    Chen, Ke
    Wu, Tong
    Liu, Qianqi
    Huang, Songming
    Zhang, Aihua
    Jia, Zhanjun
    [J]. ISCIENCE, 2021, 24 (02)
  • [43] Orlistat and ezetimibe could differently alleviate the high-fat diet-induced obesity phenotype by modulating the gut microbiota
    Jin, Jin
    Wang, Jiani
    Cheng, Ruyue
    Ren, Yan
    Miao, Zhonghua
    Luo, Yating
    Zhou, Qingqing
    Xue, Yigui
    Shen, Xi
    He, Fang
    Tian, Haoming
    [J]. FRONTIERS IN MICROBIOLOGY, 2022, 13
  • [44] Insoluble yeast β-glucan attenuates high-fat diet-induced obesity by regulating gut microbiota and its metabolites
    Mo, Xiaoxing
    Sun, Yunhong
    Liang, Xiaoling
    Li, Linyan
    Hu, Shan
    Xu, Zihui
    Liu, Shuang
    Zhang, Yan
    Li, Xiaoqin
    Liu, Liegang
    [J]. CARBOHYDRATE POLYMERS, 2022, 281
  • [45] The Effect of High-Fat Diet-Induced Pathophysiological Changes in the Gut on Obesity: What Should be the Ideal Treatment?
    Lee, Chooi Y.
    [J]. CLINICAL AND TRANSLATIONAL GASTROENTEROLOGY, 2013, 4
  • [46] Saccharina Japonica Polysaccharides Suppress High-Fat Diet-Induced Obesity and Modulate Gut Microbiota Composition and Function
    Wang, Sijia
    Fu, Zixi
    Chen, Weibing
    Wu, Sitong
    Ke, Songze
    Tu, Jianfeng
    Wei, Bin
    [J]. CHEMISTRY & BIODIVERSITY, 2024, 21 (08)
  • [47] Curcumin alleviates high-fat diet-induced hepatic steatosis and obesity in association with modulation of gut microbiota in mice
    Li, Shuo
    You, Jinming
    Wang, Zirui
    Liu, Yue
    Wang, Bo
    Du, Min
    Zou, Tiande
    [J]. FOOD RESEARCH INTERNATIONAL, 2021, 143
  • [48] Asparagus cochinchinensis alleviates disturbances of lipid metabolism and gut microbiota in high-fat diet-induced obesity mice
    Luo, Shiyue
    Zhou, Lixiao
    Jiang, Xuejun
    Xia, Yinyin
    Huang, Lishuang
    Ling, Run
    Tang, Shixin
    Zou, Zhen
    Chen, Chengzhi
    Qiu, Jingfu
    [J]. FRONTIERS IN PHARMACOLOGY, 2022, 13
  • [49] Vanillin Alleviates High Fat Diet-Induced Obesity and Improves the Gut Microbiota Composition
    Guo, Jielong
    Han, Xue
    Zhan, Jicheng
    You, Yilin
    Huang, Weidong
    [J]. FRONTIERS IN MICROBIOLOGY, 2018, 9
  • [50] Protective Role of Lipocalin 2 in High-Fat Diet-Induced Gut Microbiota Dysbiosis
    Qiu, Xiaoxue
    Macchietto, Marissa
    Shen, Steve
    Chen, Xiaoli
    [J]. DIABETES, 2019, 68