Rigidity properties of the hypercube via Bakry–Émery curvature

被引:0
|
作者
Shiping Liu
Florentin Münch
Norbert Peyerimhoff
机构
[1] University of Science and Technology of China,School of Mathematical Sciences
[2] Max-Planck-Institute for Mathematics in the Sciences Leipzig,Department of Mathematical Sciences
[3] Durham University,undefined
来源
Mathematische Annalen | 2024年 / 388卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We give rigidity results for the discrete Bonnet–Myers diameter bound and the Lichnerowicz eigenvalue estimate. Both inequalities are sharp if and only if the underlying graph is a hypercube. The proofs use well-known semigroup methods as well as new direct methods which translate curvature to combinatorial properties. Our results can be seen as first known discrete analogues of Cheng’s and Obata’s rigidity theorems.
引用
收藏
页码:1225 / 1259
页数:34
相关论文
共 50 条
  • [1] Rigidity properties of the hypercube via Bakry-emery curvature
    Liu, Shiping
    Muench, Florentin
    Peyerimhoff, Norbert
    [J]. MATHEMATISCHE ANNALEN, 2024, 388 (02) : 1225 - 1259
  • [2] Rigidity of manifolds with Bakry–Émery Ricci curvature bounded below
    Yan-Hui Su
    Hui-Chun Zhang
    [J]. Geometriae Dedicata, 2012, 160 : 321 - 331
  • [3] Bakry–Émery curvature and diameter bounds on graphs
    Shiping Liu
    Florentin Münch
    Norbert Peyerimhoff
    [J]. Calculus of Variations and Partial Differential Equations, 2018, 57
  • [4] A note on nonnegative Bakry–Émery Ricci curvature
    Ning Yang
    [J]. Archiv der Mathematik, 2009, 93 : 491 - 496
  • [5] Bakry-Émery curvature on graphs as an eigenvalue problem
    David Cushing
    Supanat Kamtue
    Shiping Liu
    Norbert Peyerimhoff
    [J]. Calculus of Variations and Partial Differential Equations, 2022, 61
  • [6] Prescribing curvature problem of Bakry-Émery Ricci tensor
    LiXia Yuan
    [J]. Science China Mathematics, 2013, 56 : 1935 - 1944
  • [7] Prescribing curvature problem of Bakry-mery Ricci tensor
    YUAN LiXia
    [J]. Science China Mathematics, 2013, 56 (09) : 1935 - 1944
  • [8] Upper Bounds on the First Eigenvalue for a Diffusion Operator via Bakry–Émery Ricci Curvature II
    Jia-Yong Wu
    [J]. Results in Mathematics, 2013, 63 : 1079 - 1094
  • [9] Generalized Bakry–Émery Curvature Condition and Equivalent Entropic Inequalities in Groups
    Giorgio Stefani
    [J]. The Journal of Geometric Analysis, 2022, 32
  • [10] Bakry–Émery curvature and model spaces in sub-Riemannian geometry
    Davide Barilari
    Luca Rizzi
    [J]. Mathematische Annalen, 2020, 377 : 435 - 482