Bakry–Émery curvature and model spaces in sub-Riemannian geometry

被引:0
|
作者
Davide Barilari
Luca Rizzi
机构
[1] Université Paris-Diderot,Institut de Mathématiques de Jussieu
[2] Batiment Sophie Germain,Paris Rive Gauche, UMR CNRS 7586
[3] Case 7012,undefined
[4] Univ. Grenoble Alpes,undefined
[5] CNRS,undefined
[6] IF,undefined
来源
Mathematische Annalen | 2020年 / 377卷
关键词
53C17; 49J15;
D O I
暂无
中图分类号
学科分类号
摘要
We prove comparison theorems for the sub-Riemannian distortion coefficients appearing in interpolation inequalities. These results, which are equivalent to a sub-Laplacian comparison theorem for the sub-Riemannian distance, are obtained by introducing a suitable notion of sub-Riemannian Bakry–Émery curvature. The model spaces for comparison are variational problems coming from optimal control theory. As an application we establish the sharp measure contraction property for 3-Sasakian manifolds satisfying a suitable curvature bound.
引用
收藏
页码:435 / 482
页数:47
相关论文
共 50 条
  • [1] Bakry-emery curvature and model spaces in sub-Riemannian geometry
    Barilari, Davide
    Rizzi, Luca
    [J]. MATHEMATISCHE ANNALEN, 2020, 377 (1-2) : 435 - 482
  • [2] Model spaces in sub-Riemannian geometry
    Grong, Erlend
    [J]. COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2021, 29 (01) : 77 - 113
  • [3] Curvature in sub-Riemannian geometry
    Bejancu, Aurel
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (02)
  • [4] Sub-Riemannian Curvature in Contact Geometry
    Agrachev, Andrei
    Barilari, Davide
    Rizzi, Luca
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2017, 27 (01) : 366 - 408
  • [5] Sub-Riemannian Curvature in Contact Geometry
    Andrei Agrachev
    Davide Barilari
    Luca Rizzi
    [J]. The Journal of Geometric Analysis, 2017, 27 : 366 - 408
  • [6] CONNECTIONS AND CURVATURE IN SUB-RIEMANNIAN GEOMETRY
    Hladky, Robert K.
    [J]. HOUSTON JOURNAL OF MATHEMATICS, 2012, 38 (04): : 1107 - 1134
  • [7] Constant curvature models in sub-Riemannian geometry
    Alekseevsky, D.
    Medvedev, A.
    Slovak, J.
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2019, 138 : 241 - 256
  • [8] CURVATURE AND THE EQUIVALENCE PROBLEM IN SUB-RIEMANNIAN GEOMETRY
    Grong, Erlend
    [J]. ARCHIVUM MATHEMATICUM, 2022, 58 (05): : 295 - 327
  • [9] Constant mean curvature surfaces in sub-Riemannian geometry
    Hladky, Robert K.
    Pauls, Scott D.
    [J]. JOURNAL OF DIFFERENTIAL GEOMETRY, 2008, 79 (01) : 111 - 139
  • [10] Sub-Riemannian geometry
    Kupka, I
    [J]. ASTERISQUE, 1997, (241) : 351 - 380