Rigidity of manifolds with Bakry–Émery Ricci curvature bounded below

被引:2
|
作者
Yan-Hui Su
Hui-Chun Zhang
机构
[1] Fuzhou University,College of Mathematics and Computer Science
[2] Sun Yat-Sen University,School of Mathematics and Computational Science
来源
Geometriae Dedicata | 2012年 / 160卷
关键词
Bakry–Emery Ricci curvature; Splitting type theorem; Spectrum; 53C24;
D O I
暂无
中图分类号
学科分类号
摘要
Let M be a complete Riemannian manifold with Riemannian volume volg and f be a smooth function on M. A sharp upper bound estimate on the first eigenvalue of symmetric diffusion operator \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta_f = \Delta- \nabla f \cdot \nabla}$$\end{document} was given by Wu (J Math Anal Appl 361:10–18, 2010) and Wang (Ann Glob Anal Geom 37:393–402, 2010) under a condition that finite dimensional Bakry–Émery Ricci curvature is bounded below, independently. They propounded an open problem is whether there is some rigidity on the estimate. In this note, we will solve this problem to obtain a splitting type theorem, which generalizes Li–Wang’s result in Wang (J Differ Geom 58:501–534, 2001, J Differ Geom 62:143–162, 2002). For the case that infinite dimensional Bakry–Emery Ricci curvature of M is bounded below, we do not expect any upper bound estimate on the first eigenvalue of Δf without any additional assumption (see the example in Sect. 2). In this case, we will give a sharp upper bound estimate on the first eigenvalue of Δf under the additional assuption that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${|\nabla f|}$$\end{document} is bounded. We also obtain the rigidity result on this estimate, as another Li–Wang type splitting theorem.
引用
收藏
页码:321 / 331
页数:10
相关论文
共 50 条
  • [1] Rigidity of manifolds with Bakry-Aparts per thousandmery Ricci curvature bounded below
    Su, Yan-Hui
    Zhang, Hui-Chun
    [J]. GEOMETRIAE DEDICATA, 2012, 160 (01) : 321 - 331
  • [2] Bounds on Harmonic Radius and Limits of Manifolds with Bounded Bakry–Émery Ricci Curvature
    Qi S. Zhang
    Meng Zhu
    [J]. The Journal of Geometric Analysis, 2019, 29 : 2082 - 2123
  • [3] Sobolev inequality on manifolds with asymptotically nonnegative Bakry-Émery Ricci curvature
    Dong, Yuxin
    Lin, Hezi
    Lu, Lingen
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2024, 56 (07) : 2395 - 2407
  • [4] Harmonic forms on manifolds with non-negative Bakry–Émery–Ricci curvature
    Matheus Vieira
    [J]. Archiv der Mathematik, 2013, 101 : 581 - 590
  • [5] A note on nonnegative Bakry–Émery Ricci curvature
    Ning Yang
    [J]. Archiv der Mathematik, 2009, 93 : 491 - 496
  • [6] Two rigidity theorems on manifolds with Bakry-Emery Ricci curvature
    Ruan, Qi-hua
    [J]. PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2009, 85 (06) : 71 - 74
  • [7] The structure of spaces with Bakry-Emery Ricci curvature bounded below
    Wang, Feng
    Zhu, Xiaohua
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2019, 757 : 1 - 50
  • [8] Rigidity properties of the hypercube via Bakry–Émery curvature
    Shiping Liu
    Florentin Münch
    Norbert Peyerimhoff
    [J]. Mathematische Annalen, 2024, 388 : 1225 - 1259
  • [9] Mean curvature in manifolds with Ricci curvature bounded from below
    Choe, Jaigyoung
    Fraser, Ailana
    [J]. COMMENTARII MATHEMATICI HELVETICI, 2018, 93 (01) : 55 - 69
  • [10] Prescribing curvature problem of Bakry-Émery Ricci tensor
    LiXia Yuan
    [J]. Science China Mathematics, 2013, 56 : 1935 - 1944