Rigidity of manifolds with Bakry–Émery Ricci curvature bounded below

被引:2
|
作者
Yan-Hui Su
Hui-Chun Zhang
机构
[1] Fuzhou University,College of Mathematics and Computer Science
[2] Sun Yat-Sen University,School of Mathematics and Computational Science
来源
Geometriae Dedicata | 2012年 / 160卷
关键词
Bakry–Emery Ricci curvature; Splitting type theorem; Spectrum; 53C24;
D O I
暂无
中图分类号
学科分类号
摘要
Let M be a complete Riemannian manifold with Riemannian volume volg and f be a smooth function on M. A sharp upper bound estimate on the first eigenvalue of symmetric diffusion operator \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta_f = \Delta- \nabla f \cdot \nabla}$$\end{document} was given by Wu (J Math Anal Appl 361:10–18, 2010) and Wang (Ann Glob Anal Geom 37:393–402, 2010) under a condition that finite dimensional Bakry–Émery Ricci curvature is bounded below, independently. They propounded an open problem is whether there is some rigidity on the estimate. In this note, we will solve this problem to obtain a splitting type theorem, which generalizes Li–Wang’s result in Wang (J Differ Geom 58:501–534, 2001, J Differ Geom 62:143–162, 2002). For the case that infinite dimensional Bakry–Emery Ricci curvature of M is bounded below, we do not expect any upper bound estimate on the first eigenvalue of Δf without any additional assumption (see the example in Sect. 2). In this case, we will give a sharp upper bound estimate on the first eigenvalue of Δf under the additional assuption that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${|\nabla f|}$$\end{document} is bounded. We also obtain the rigidity result on this estimate, as another Li–Wang type splitting theorem.
引用
收藏
页码:321 / 331
页数:10
相关论文
共 50 条