Inner Radius of Univalence for a Strongly Starlike Domain

被引:0
|
作者
Toshiyuki Sugawa
机构
[1] Hiroshima University,
[2] Japan,undefined
来源
关键词
2000 Mathematics Subject Classification: 30C45; 30C62; Key words: Strongly starlike, Poincaré metric, inner radius of univalence;
D O I
暂无
中图分类号
学科分类号
摘要
 The inner radius of univalence of a domain D with Poincaré density ρD is the possible largest number σ such that the condition ∥ Sf ∥D = supw∈ D ρD (w)−2∥ Sf (z) ∥ ≤ σ implies univalence of f for a nonconstant meromorphic function f on D, where Sf is the Schwarzian derivative of f. In this note, we give a lower bound of the inner radius of univalence for strongly starlike domains of order α in terms of the order α.
引用
收藏
页码:61 / 68
页数:7
相关论文
共 50 条
  • [41] Some results for strongly starlike functions
    Nunokawa, M
    Owa, S
    Saitoh, H
    Ikeda, A
    Koike, N
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 212 (01) : 98 - 106
  • [42] Criteria for strongly starlike and Φ-like functions
    Liu, Ming-Sheng
    Zhu, Yu-Can
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2008, 53 (05) : 485 - 500
  • [44] ON THE RADIUS OF UNIVALENCE AND STARLIKENESS OF A CLASS OF ANALYTIC-FUNCTIONS
    RANGARAJAN, MR
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1980, 11 (02): : 245 - 251
  • [45] UNIVALENCE CONDITIONS AND RADIUS PROBLEMS FOR HARMONIC DIFFERENTIAL OPERATORS
    Hu, Qian
    Liu, Zhihong
    Jin, Wei
    Zhang, Wenbo
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2024, 14 (02): : 947 - 963
  • [46] Radius of Univalence of Certain Combination of Univalent and Analytic Functions
    Obradovic, M.
    Ponnusamy, S.
    Tuneski, N.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2012, 35 (02) : 325 - 334
  • [47] Radius of Limacon starlikeness for Janowski starlike functions
    Kanaga, R.
    Ravichandran, V
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2022, 15 (09)
  • [48] RADIUS OF CONVEXITY OF SECTIONS OF A SUBCLASS OF STARLIKE FUNCTIONS
    Varma, S. Sunil
    Rosy, Thomas
    ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES, 2021, 20 (09): : 1675 - 1683
  • [49] POLES AND RADIUS OF CIRCULAR UNIVALENCE IN MEROMORPHIC CLASS PHI
    TODOROV, P
    DOKLADY AKADEMII NAUK SSSR, 1966, 168 (03): : 532 - &
  • [50] The Radius of Convexity and a Sufficient Condition for Starlike Mappings
    Liu, Ming-Sheng
    Zhu, Yu-Can
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2012, 35 (02) : 425 - 433