Inner Radius of Univalence for a Strongly Starlike Domain

被引:0
|
作者
Toshiyuki Sugawa
机构
[1] Hiroshima University,
[2] Japan,undefined
来源
关键词
2000 Mathematics Subject Classification: 30C45; 30C62; Key words: Strongly starlike, Poincaré metric, inner radius of univalence;
D O I
暂无
中图分类号
学科分类号
摘要
 The inner radius of univalence of a domain D with Poincaré density ρD is the possible largest number σ such that the condition ∥ Sf ∥D = supw∈ D ρD (w)−2∥ Sf (z) ∥ ≤ σ implies univalence of f for a nonconstant meromorphic function f on D, where Sf is the Schwarzian derivative of f. In this note, we give a lower bound of the inner radius of univalence for strongly starlike domains of order α in terms of the order α.
引用
收藏
页码:61 / 68
页数:7
相关论文
共 50 条
  • [21] ON STRONGLY STARLIKE FUNCTIONS OF ORDER (α, β)
    Nunokawa, Mamoru
    Sokol, Janusz
    MISKOLC MATHEMATICAL NOTES, 2018, 19 (01) : 431 - 437
  • [22] GENERALIZATIONS OF STRONGLY STARLIKE FUNCTIONS
    Dziok, Jacek
    TAIWANESE JOURNAL OF MATHEMATICS, 2014, 18 (01): : 39 - 51
  • [23] RADIUS OF UNIVALENCE AND STARLIKENESS OF CERTAN REGULAR FUNCTIONS
    CALYS, EG
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (01): : 316 - &
  • [24] Radius of univalence of certain class of analytic functions
    Obradovic, M.
    Ponnusamy, S.
    FILOMAT, 2013, 27 (06) : 1085 - 1090
  • [25] RADIUS OF UNIVALENCE OF CERTAIN CLASSES OF ANALYTIC FUNCTIONS
    BARR, AF
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (07): : 1056 - &
  • [26] ON RADIUS OF UNIVALENCE OF CERTAIN CLASSES OF ANALYTIC FUNCTIONS
    PADMANABHAN, KS
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY, 1969, 1 (2P2): : 225 - +
  • [27] RADIUS OF UNIVALENCE OF CERTAIN ANALYTIC-FUNCTIONS
    ALAMIRI, HS
    COLLOQUIUM MATHEMATICUM, 1973, 28 (01) : 133 - 139
  • [28] On the eigenvalues and spectral radius of starlike trees
    Mohammad Reza Oboudi
    Aequationes mathematicae, 2018, 92 : 683 - 694
  • [29] The Bohr radius for starlike logharmonic mappings
    Ali, Rosihan M.
    Abdulhadi, Zayid
    Ng, Zhen Chuan
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2016, 61 (01) : 1 - 14
  • [30] Certain conditions for strongly starlike and strongly convex functions
    Billing, Sukhwinder Singh
    Gupta, Sushma
    Dhaliwal, Sukhjit Singh
    International Journal of Computational and Mathematical Sciences, 2010, 4 (06): : 290 - 292