Inner Radius of Univalence for a Strongly Starlike Domain

被引:0
|
作者
Toshiyuki Sugawa
机构
[1] Hiroshima University,
[2] Japan,undefined
来源
关键词
2000 Mathematics Subject Classification: 30C45; 30C62; Key words: Strongly starlike, Poincaré metric, inner radius of univalence;
D O I
暂无
中图分类号
学科分类号
摘要
 The inner radius of univalence of a domain D with Poincaré density ρD is the possible largest number σ such that the condition ∥ Sf ∥D = supw∈ D ρD (w)−2∥ Sf (z) ∥ ≤ σ implies univalence of f for a nonconstant meromorphic function f on D, where Sf is the Schwarzian derivative of f. In this note, we give a lower bound of the inner radius of univalence for strongly starlike domains of order α in terms of the order α.
引用
收藏
页码:61 / 68
页数:7
相关论文
共 50 条
  • [1] Inner radius of univalence for a strongly starlike domain
    Sugawa, T
    MONATSHEFTE FUR MATHEMATIK, 2003, 139 (01): : 61 - 68
  • [2] The inner radius of univalence in the sense of pre-Schwarzian derivative based on angular domain
    Guo, Hui
    Feng, Xiao-Gao
    Cui, Ze-Jian
    Shenzhen Daxue Xuebao (Ligong Ban)/Journal of Shenzhen University Science and Engineering, 2008, 25 (04): : 437 - 440
  • [3] Radius Results for Certain Strongly Starlike Functions
    Saliu, Afis
    Jabeen, Kanwal
    Xin, Qin
    Tchier, Fairouz
    Malik, Sarfraz Nawaz
    SYMMETRY-BASEL, 2023, 15 (05):
  • [4] A NOTE ABOUT AN AHLFORS INEQUALITY AND INNER RADIUS OF UNIVALENCE
    TAN, D
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE SERIES A1-MATHEMATICA, 1990, 14 (02): : 351 - 355
  • [5] The univalence of α-project starlike functions
    Nunokawa, Mamoru
    Sokol, Janusz
    MATHEMATISCHE NACHRICHTEN, 2015, 288 (2-3) : 327 - 333
  • [6] On strongly starlike and strongly convex functions with bounded radius and bounded boundary rotation
    Hussain, Sabir
    Ahmad, Khalil
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01)
  • [7] On strongly starlike and strongly convex functions with bounded radius and bounded boundary rotation
    Sabir Hussain
    Khalil Ahmad
    Journal of Inequalities and Applications, 2020
  • [8] On the inner radius of a nodal domain
    Mangoubi, Dan
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2008, 51 (02): : 249 - 260
  • [9] ON RADIUS OF UNIVALENCE OF A POLYNOMIAL
    BASGOZE, T
    MATHEMATISCHE ZEITSCHRIFT, 1968, 105 (04) : 299 - &
  • [10] THE RADIUS OF UNIVALENCE OF AN ANALYTIC FUNCTION
    NEHARI, Z
    AMERICAN JOURNAL OF MATHEMATICS, 1949, 71 (04) : 845 - 852