Enhancing diagnostic deep learning via self-supervised pretraining on large-scale, unlabeled non-medical images

被引:0
|
作者
Soroosh Tayebi Arasteh
Leo Misera
Jakob Nikolas Kather
Daniel Truhn
Sven Nebelung
机构
[1] University Hospital RWTH Aachen,Department of Diagnostic and Interventional Radiology
[2] Faculty of Medicine and University Hospital Carl Gustav Carus Dresden,Institute and Polyclinic for Diagnostic and Interventional Radiology
[3] Technische Universität Dresden,Else Kröner Fresenius Center for Digital Health
[4] Technische Universität Dresden,Department of Medicine III
[5] University Hospital RWTH Aachen,Medical Oncology, National Center for Tumor Diseases (NCT)
[6] University Hospital Heidelberg,undefined
关键词
Artificial intelligence; Deep learning; Medical image processing; Radiography (thoracic); Unsupervised machine learning;
D O I
暂无
中图分类号
学科分类号
摘要
• Validated on over 800,000 chest radiographs from 6 datasets and 20 imaging findings, a self-supervised pretraining on non-medical images outperformed ImageNet-based supervised pretraining.
引用
收藏
相关论文
共 50 条
  • [41] DeepMapping2: Self-Supervised Large-Scale LiDAR Map Optimization
    Chen, Chao
    Liu, Xinhao
    Li, Yiming
    Ding, Li
    Feng, Chen
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 9306 - 9316
  • [42] Scaling Vision Transformers to Gigapixel Images via Hierarchical Self-Supervised Learning
    Chen, Richard J.
    Chen, Chengkuan
    Li, Yicong
    Chen, Tiffany Y.
    Trister, Andrew D.
    Krishnan, Rahul G.
    Mahmood, Faisal
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 16123 - 16134
  • [43] CurriculumNet: Weakly Supervised Learning from Large-Scale Web Images
    Guo, Sheng
    Huang, Weilin
    Zhang, Haozhi
    Zhuang, Chenfan
    Dong, Dengke
    Scott, Matthew R.
    Huang, Dinglong
    COMPUTER VISION - ECCV 2018, PT X, 2018, 11214 : 139 - 154
  • [44] Self-Supervised Blind Image Deconvolution via Deep Generative Ensemble Learning
    Chen, Mingqin
    Quan, Yuhui
    Xu, Yong
    Ji, Hui
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (02) : 634 - 647
  • [45] Self-supervised Learning for Building Damage Assessment from Large-Scale xBD Satellite Imagery Benchmark Datasets
    Xia, Zaishuo
    Li, Zelin
    Bai, Yanbing
    Yu, Jinze
    Adriano, Bruno
    DATABASE AND EXPERT SYSTEMS APPLICATIONS, DEXA 2022, PT I, 2022, 13426 : 373 - 386
  • [46] UniMiSS: Universal Medical Self-supervised Learning via Breaking Dimensionality Barrier
    Xie, Yutong
    Zhang, Jianpeng
    Xia, Yong
    Wu, Qi
    COMPUTER VISION, ECCV 2022, PT XXI, 2022, 13681 : 558 - 575
  • [47] Self-supervised deep-learning segmentation of corneal endothelium specular microscopy images
    Sanchez, Sergio
    Mendoza, Kevin
    Quintero, Fernando J.
    Prada, Angelica M.
    Tello, Alejandro
    Galvis, Virgilio
    Romero, Lenny A.
    Marrugo, Andres G.
    2023 IEEE COLOMBIAN CONFERENCE ON APPLICATIONS OF COMPUTATIONAL INTELLIGENCE, COLCACI, 2023,
  • [48] Contrastive self-supervised learning from 100 million medical images with optional supervision
    Ghesu, Florin C.
    Georgescu, Bogdan
    Mansoor, Awais
    Yoo, Youngjin
    Neumann, Dominik
    Patel, Pragneshkumar
    Vishwanath, Reddappagari Suryanarayana
    Balter, James M.
    Cao, Yue
    Grbic, Sasa
    Comaniciu, Dorin
    JOURNAL OF MEDICAL IMAGING, 2022, 9 (06)
  • [49] Context Matters: Graph-based Self-supervised Representation Learning for Medical Images
    Li Sun
    Yu, Ke
    Batmanghelich, Kayhan
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 4874 - 4882
  • [50] Personvit: large-scale self-supervised vision transformer for person re-identification
    Hu, Bin
    Wang, Xinggang
    Liu, Wenyu
    Machine Vision and Applications, 2025, 36 (02)