Enhancing diagnostic deep learning via self-supervised pretraining on large-scale, unlabeled non-medical images

被引:0
|
作者
Soroosh Tayebi Arasteh
Leo Misera
Jakob Nikolas Kather
Daniel Truhn
Sven Nebelung
机构
[1] University Hospital RWTH Aachen,Department of Diagnostic and Interventional Radiology
[2] Faculty of Medicine and University Hospital Carl Gustav Carus Dresden,Institute and Polyclinic for Diagnostic and Interventional Radiology
[3] Technische Universität Dresden,Else Kröner Fresenius Center for Digital Health
[4] Technische Universität Dresden,Department of Medicine III
[5] University Hospital RWTH Aachen,Medical Oncology, National Center for Tumor Diseases (NCT)
[6] University Hospital Heidelberg,undefined
关键词
Artificial intelligence; Deep learning; Medical image processing; Radiography (thoracic); Unsupervised machine learning;
D O I
暂无
中图分类号
学科分类号
摘要
• Validated on over 800,000 chest radiographs from 6 datasets and 20 imaging findings, a self-supervised pretraining on non-medical images outperformed ImageNet-based supervised pretraining.
引用
收藏
相关论文
共 50 条
  • [21] BrainMass: Advancing Brain Network Analysis for Diagnosis with Large-scale Self-Supervised Learning
    Yang Y.
    Ye C.
    Su G.
    Zhang Z.
    Chang Z.
    Chen H.
    Chan P.
    Yu Y.
    Ma T.
    IEEE Transactions on Medical Imaging, 2024, 43 (11) : 1 - 1
  • [22] Self-Supervised Graph Transformer on Large-Scale Molecular Data
    Rong, Yu
    Bian, Yatao
    Xu, Tingyang
    Xie, Weiyang
    Wei, Ying
    Huang, Wenbing
    Huang, Junzhou
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [23] LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical Imaging via Second-order Graph Matching
    Nguyen, Duy M. H.
    Nguyen, Hoang
    Diep, Nghiem T.
    Pham, Tan N.
    Cao, Tri
    Nguyen, Binh T.
    Swoboda, Paul
    Ho, Nhat
    Albarqouni, Shadi
    Xie, Pengtao
    Sonntag, Daniel
    Niepert, Mathias
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [24] Fast and scalable search of whole-slide images via self-supervised deep learning
    Chengkuan Chen
    Ming Y. Lu
    Drew F. K. Williamson
    Tiffany Y. Chen
    Andrew J. Schaumberg
    Faisal Mahmood
    Nature Biomedical Engineering, 2022, 6 : 1420 - 1434
  • [25] Fast and scalable search of whole-slide images via self-supervised deep learning
    Chen, Chengkuan
    Lu, Ming Y.
    Williamson, Drew F. K.
    Chen, Tiffany Y.
    Schaumberg, Andrew J.
    Mahmood, Faisal
    NATURE BIOMEDICAL ENGINEERING, 2022, 6 (12) : 1420 - +
  • [26] Efficient Medical Image Assessment via Self-supervised Learning
    Huang, Chun-Yin
    Lei, Qi
    Li, Xiaoxiao
    DATA AUGMENTATION, LABELLING, AND IMPERFECTIONS (DALI 2022), 2022, 13567 : 102 - 111
  • [27] Self-supervised pretraining enables deep learning-based classification of AMD with fewer annotations
    Holland, Robbie
    Menten, Martin Joseph
    Leingang, Oliver
    Bogunovic, Hrvoje
    Hagag, Ahmed M.
    Kaye, Rebecca
    Riedl, Sophie
    Traber, Ghislaine
    Fritsche, Lars
    Prevost, Toby
    Scholl, Hendrik P.
    Schmidt-Erfurth, Ursula
    Sivaprasad, Sobha
    Rueckert, Daniel
    Lotery, Andrew J.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2022, 63 (07)
  • [28] SSGait: enhancing gait recognition via semi-supervised self-supervised learning
    Xi, Hao
    Ren, Kai
    Lu, Peng
    Li, Yongqiang
    Hu, Chuanping
    APPLIED INTELLIGENCE, 2024, 54 (07) : 5639 - 5657
  • [29] Aggregative Self-supervised Feature Learning from Limited Medical Images
    Zhu, Jiuwen
    Li, Yuexiang
    Ding, Lian
    Zhou, S. Kevin
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT VIII, 2022, 13438 : 57 - 66
  • [30] Localized Region Contrast for Enhancing Self-supervised Learning in Medical Image Segmentation
    Yan, Xiangyi
    Naushad, Junayed
    You, Chenyu
    Tang, Hao
    Sun, Shanlin
    Han, Kun
    Ma, Haoyu
    Duncan, James S.
    Xie, Xiaohui
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT II, 2023, 14221 : 468 - 478