Monotonicity results for fractional difference operators with discrete exponential kernels

被引:0
|
作者
Thabet Abdeljawad
Dumitru Baleanu
机构
[1] Prince Sultan University,Department of Mathematics and General Sciences
[2] Çankaya University,Department of Mathematics
[3] Institute of Space Sciences,undefined
关键词
discrete exponential kernel; Caputo fractional difference; Riemann fractional difference; discrete fractional mean value theorem;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that if the Caputo-Fabrizio nabla fractional difference operator (a−1CFR∇αy)(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$({}^{\mathrm{CFR}}_{a-1}\nabla^{\alpha}y)(t)$\end{document} of order 0<α≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0<\alpha\leq1$\end{document} and starting at a−1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a-1$\end{document} is positive for t=a,a+1,…\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t=a,a+1,\ldots$\end{document} , then y(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$y(t)$\end{document} is α-increasing. Conversely, if y(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$y(t)$\end{document} is increasing and y(a)≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$y(a)\geq0$\end{document}, then (a−1CFR∇αy)(t)≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$({}^{\mathrm{CFR}}_{a-1}\nabla^{\alpha}y)(t)\geq0$\end{document}. A monotonicity result for the Caputo-type fractional difference operator is proved as well. As an application, we prove a fractional difference version of the mean-value theorem and make a comparison to the classical discrete fractional case.
引用
收藏
相关论文
共 50 条
  • [41] A Study of Monotonicity Analysis for the Delta and Nabla Discrete Fractional Operators of the Liouville-Caputo Family
    Mohammed, Pshtiwan Othman
    Goodrich, Christopher S. S.
    Srivastava, Hari Mohan
    Al-Sarairah, Eman
    Hamed, Y. S.
    AXIOMS, 2023, 12 (02)
  • [42] Certain inequalities in frame of the left-sided fractional integral operators having exponential kernels
    Yu, Shuhong
    Du, Tingsong
    AIMS MATHEMATICS, 2022, 7 (03): : 4094 - 4114
  • [43] Heat kernels of the discrete Laguerre operators
    Kostenko, Aleksey
    LETTERS IN MATHEMATICAL PHYSICS, 2021, 111 (02)
  • [44] Heat kernels of the discrete Laguerre operators
    Aleksey Kostenko
    Letters in Mathematical Physics, 2021, 111
  • [45] On the monotonicity of the discrete Choquet-like operators
    Boczek, Michal
    Jozefiak, Tomasz
    Kaluszka, Marek
    Okolewski, Andrzej
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2023, 163
  • [46] Heat kernels of the discrete Laguerre operators
    Faculty of Mathematics and Physics, University of Ljubljana, Jadranska ul. 19, Ljubljana
    1000, Slovenia
    不详
    1040, Austria
    arXiv,
  • [47] Powers of Dirichlet kernels and approximation by discrete linear operators I: direct results
    Bustamante, Jorge
    CONSTRUCTIVE MATHEMATICAL ANALYSIS, 2022, 5 (02): : 105 - 118
  • [48] COMPLETE MONOTONICITY OF A DIFFERENCE BETWEEN THE EXPONENTIAL AND TRIGAMMA FUNCTIONS
    Qi, Feng
    Zhang, Xiao-Jing
    JOURNAL OF THE KOREAN SOCIETY OF MATHEMATICAL EDUCATION SERIES B-PURE AND APPLIED MATHEMATICS, 2014, 21 (02): : 141 - 145
  • [49] ANALYTICAL AND NUMERICAL MONOTONICITY RESULTS FOR DISCRETE FRACTIONAL SEQUENTIAL DIFFERENCES WITH NEGATIVE LOWER BOUND
    Goodrich, Christopher S.
    Lyons, Benjamin
    Velcsov, Mihaela T.
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2021, 20 (01) : 339 - 358
  • [50] SIR epidemic model of childhood diseases through fractional operators with Mittag-Leffler and exponential kernels
    Jena, Rajarama Mohan
    Chakraverty, Snehashish
    Baleanu, Dumitru
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2021, 182 : 514 - 534