Monotonicity results for fractional difference operators with discrete exponential kernels

被引:0
|
作者
Thabet Abdeljawad
Dumitru Baleanu
机构
[1] Prince Sultan University,Department of Mathematics and General Sciences
[2] Çankaya University,Department of Mathematics
[3] Institute of Space Sciences,undefined
关键词
discrete exponential kernel; Caputo fractional difference; Riemann fractional difference; discrete fractional mean value theorem;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that if the Caputo-Fabrizio nabla fractional difference operator (a−1CFR∇αy)(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$({}^{\mathrm{CFR}}_{a-1}\nabla^{\alpha}y)(t)$\end{document} of order 0<α≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0<\alpha\leq1$\end{document} and starting at a−1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a-1$\end{document} is positive for t=a,a+1,…\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t=a,a+1,\ldots$\end{document} , then y(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$y(t)$\end{document} is α-increasing. Conversely, if y(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$y(t)$\end{document} is increasing and y(a)≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$y(a)\geq0$\end{document}, then (a−1CFR∇αy)(t)≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$({}^{\mathrm{CFR}}_{a-1}\nabla^{\alpha}y)(t)\geq0$\end{document}. A monotonicity result for the Caputo-type fractional difference operator is proved as well. As an application, we prove a fractional difference version of the mean-value theorem and make a comparison to the classical discrete fractional case.
引用
收藏
相关论文
共 50 条
  • [31] DIFFERENCE SCHRODINGER-OPERATORS WITH LINEAR AND EXPONENTIAL DISCRETE SPECTRA
    SPIRIDONOV, V
    VINET, L
    ZHEDANOV, A
    LETTERS IN MATHEMATICAL PHYSICS, 1993, 29 (01) : 63 - 73
  • [32] Certain Parameterized Inequalities Arising from Fractional Integral Operators with Exponential Kernels
    Yuan, Zhengrong
    Zhou, Taichun
    Zhang, Qiang
    Du, Tingsong
    FILOMAT, 2021, 35 (05) : 1707 - 1724
  • [33] An analysis of the sharpness of monotonicity results via homotopy for sequential fractional operators
    Goodrich, Christopher S.
    Muellner, Matthew
    APPLIED MATHEMATICS LETTERS, 2019, 98 : 446 - 452
  • [34] Analysing discrete fractional operators with exponential kernel for positivity in lower boundedness
    Mahmood, Sarkhel Akbar
    Mohammed, Pshtiwan Othman
    Baleanu, Dumitru
    Aydi, Hassen
    Hamed, Yasser S.
    AIMS MATHEMATICS, 2022, 7 (06): : 10387 - 10399
  • [35] Survey of the qualitative properties of fractional difference operators: monotonicity, convexity, and asymptotic behavior of solutions
    Erbe, Lynn
    Goodrich, Christopher S.
    Jia, Baoguo
    Peterson, Allan
    ADVANCES IN DIFFERENCE EQUATIONS, 2016, : 1 - 31
  • [36] Modified Fractional Difference Operators Defined Using Mittag-Leffler Kernels
    Mohammed, Pshtiwan Othman
    Srivastava, Hari Mohan
    Baleanu, Dumitru
    Abualnaja, Khadijah M.
    SYMMETRY-BASEL, 2022, 14 (08):
  • [37] THE Q-ANALOGUES OF NONSINGULAR FRACTIONAL OPERATORS WITH MITTAG-LEFFLER AND EXPONENTIAL KERNELS
    Thabet, Sabri t. m.
    Kedim, Imed
    Abdalla, Bahaaeldin
    Abdeljawad, Thabet
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2024, 32 (07N08)
  • [38] Survey of the qualitative properties of fractional difference operators: monotonicity, convexity, and asymptotic behavior of solutions
    Lynn Erbe
    Christopher S Goodrich
    Baoguo Jia
    Allan Peterson
    Advances in Difference Equations, 2016
  • [39] ANALYSIS OF CONVEXITY RESULTS FOR DISCRETE FRACTIONAL NABLA OPERATORS
    Dahal, Rajendra
    Goodrich, Christopher S.
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2021, 51 (06) : 1981 - 2001
  • [40] Difference operators and generalized discrete fractional transforms in signal and image processing
    Annaby, M. H.
    Ayad, H. A.
    Rushdi, M. A.
    Nehary, E. A.
    SIGNAL PROCESSING, 2018, 151 : 1 - 18