Monotonicity results for fractional difference operators with discrete exponential kernels

被引:0
|
作者
Thabet Abdeljawad
Dumitru Baleanu
机构
[1] Prince Sultan University,Department of Mathematics and General Sciences
[2] Çankaya University,Department of Mathematics
[3] Institute of Space Sciences,undefined
关键词
discrete exponential kernel; Caputo fractional difference; Riemann fractional difference; discrete fractional mean value theorem;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that if the Caputo-Fabrizio nabla fractional difference operator (a−1CFR∇αy)(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$({}^{\mathrm{CFR}}_{a-1}\nabla^{\alpha}y)(t)$\end{document} of order 0<α≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0<\alpha\leq1$\end{document} and starting at a−1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a-1$\end{document} is positive for t=a,a+1,…\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t=a,a+1,\ldots$\end{document} , then y(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$y(t)$\end{document} is α-increasing. Conversely, if y(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$y(t)$\end{document} is increasing and y(a)≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$y(a)\geq0$\end{document}, then (a−1CFR∇αy)(t)≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$({}^{\mathrm{CFR}}_{a-1}\nabla^{\alpha}y)(t)\geq0$\end{document}. A monotonicity result for the Caputo-type fractional difference operator is proved as well. As an application, we prove a fractional difference version of the mean-value theorem and make a comparison to the classical discrete fractional case.
引用
收藏
相关论文
共 50 条
  • [1] Monotonicity results for fractional difference operators with discrete exponential kernels
    Abdeljawad, Thabet
    Baleanu, Dumitru
    ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [2] Convexity, monotonicity, and positivity results for sequential fractional nabla difference operators with discrete exponential kernels
    Goodrich, Christopher S.
    Jonnalagadda, Jagan M.
    Lyons, Benjamin
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (08) : 7099 - 7120
  • [3] Arbitrary Order Fractional Difference Operators with Discrete Exponential Kernels and Applications
    Abdeljawad, Thabet
    Al-Mdallal, Qasem M.
    Hajji, Mohamed A.
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2017, 2017
  • [4] On Convexity, Monotonicity and Positivity Analysis for Discrete Fractional Operators Defined Using Exponential Kernels
    Mohammed, Pshtiwan Othman
    Almutairi, Ohud
    Agarwal, Ravi P.
    Hamed, Y. S.
    FRACTAL AND FRACTIONAL, 2022, 6 (02)
  • [5] Positivity and monotonicity results for discrete fractional operators involving the exponential kernel
    Mohammed, Pshtiwan Othman
    Srivastava, Hari Mohan
    Mahmood, Sarkhel Akbar
    Nonlaopon, Kamsing
    Abualnaja, Khadijah M.
    Hamed, Y. S.
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2022, 19 (05) : 5120 - 5133
  • [6] Difference monotonicity analysis on discrete fractional operators with discrete generalized Mittag-Leffler kernels
    Pshtiwan Othman Mohammed
    Faraidun Kadir Hamasalh
    Thabet Abdeljawad
    Advances in Difference Equations, 2021
  • [7] Difference monotonicity analysis on discrete fractional operators with discrete generalized Mittag-Leffler kernels
    Mohammed, Pshtiwan Othman
    Hamasalh, Faraidun Kadir
    Abdeljawad, Thabet
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [8] Analysis of positivity results for discrete fractional operators by means of exponential kernels
    Mohammed, Pshtiwan Othman
    O'Regan, Donal
    Brzo, Aram Bahroz
    Abualnaja, Khadijah M.
    Baleanu, Dumitru
    AIMS MATHEMATICS, 2022, 7 (09): : 15812 - 15823
  • [9] A monotonicity result for discrete fractional difference operators
    Rajendra Dahal
    Christopher S. Goodrich
    Archiv der Mathematik, 2014, 102 : 293 - 299
  • [10] A monotonicity result for discrete fractional difference operators
    Dahal, Rajendra
    Goodrich, Christopher S.
    ARCHIV DER MATHEMATIK, 2014, 102 (03) : 293 - 299