Numerical approximation to Prabhakar fractional Sturm–Liouville problem

被引:0
|
作者
Mohammad Hossein Derakhshan
Alireza Ansari
机构
[1] Shahrekord University,Department of Applied Mathematics, Faculty of Mathematical Sciences
来源
关键词
Fractional Sturm–Liouville problem; Numerical solution; Fractional diffusion equation; Prabhakar fractional derivative; 26A33; 65L20; 70K20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we treat a numerical scheme for the regular fractional Sturm–Liouville problem containing the Prabhakar fractional derivatives with the mixed boundary conditions. We show that the eigenfunctions corresponding to distinct numerical eigenvalues are orthogonal in the Hilbert spaces. The numerical errors and convergence rates are also investigated. Further, we consider a space-fractional diffusion equation and study the associated fractional Sturm–Liouville problem along with the convergence analysis.
引用
收藏
相关论文
共 50 条
  • [1] Numerical approximation to Prabhakar fractional Sturm-Liouville problem
    Derakhshan, Mohammad Hossein
    Ansari, Alireza
    COMPUTATIONAL & APPLIED MATHEMATICS, 2019, 38 (02):
  • [2] A numerical approximation for generalized fractional Sturm-Liouville problem with application
    Goel, Eti
    Pandey, Rajesh K.
    Yadav, S.
    Agrawal, Om P.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2023, 207 : 417 - 436
  • [3] Variational Approximation for Fractional Sturm–Liouville Problem
    Prashant K. Pandey
    Rajesh K. Pandey
    Om P. Agrawal
    Fractional Calculus and Applied Analysis, 2020, 23 : 861 - 874
  • [4] The fractional Sturm-Liouville problem-Numerical approximation and application in fractional diffusion
    Ciesielski, Mariusz
    Klimek, Malgorzata
    Blaszczyk, Tomasz
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 317 : 573 - 588
  • [5] VARIATIONAL APPROXIMATION FOR FRACTIONAL STURM-LIOUVILLE PROBLEM
    Pandey, Prashant K.
    Pandey, Rajesh K.
    Agrawal, Om P.
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2020, 23 (03) : 861 - 874
  • [6] Numerical approximation of tempered fractional Sturm-Liouville problem with application in fractional diffusion equation
    Yadav, Swati
    Pandey, Rajesh K.
    Pandey, Prashant K.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2021, 93 (03) : 610 - 627
  • [7] Exact and numerical solutions of the fractional Sturm–Liouville problem
    Malgorzata Klimek
    Mariusz Ciesielski
    Tomasz Blaszczyk
    Fractional Calculus and Applied Analysis, 2018, 21 : 45 - 71
  • [8] EXACT AND NUMERICAL SOLUTIONS OF THE FRACTIONAL STURM-LIOUVILLE PROBLEM
    Klimek, Malgorzata
    Ciesielski, Mariusz
    Blaszczyk, Tomasz
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2018, 21 (01) : 45 - 71
  • [9] Fractional Sturm-Liouville problem
    Klimek, M.
    Agrawal, O. P.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 66 (05) : 795 - 812
  • [10] Fractional Sturm-Liouville eigen-problems: Theory and numerical approximation
    Zayernouri, Mohsen
    Karniadakis, George Em
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 252 : 495 - 517