Numerical approximation of tempered fractional Sturm-Liouville problem with application in fractional diffusion equation

被引:11
|
作者
Yadav, Swati [1 ]
Pandey, Rajesh K. [1 ]
Pandey, Prashant K. [1 ]
机构
[1] Indian Inst Technol BHU, Dept Math Sci, Varanasi, Uttar Pradesh, India
关键词
finite difference method; fractional Sturm-Liouville operators; numerical analysis; tempered fractional calculus; DIFFERENTIAL-EQUATIONS; MOTION;
D O I
10.1002/fld.4901
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we discuss the numerical approximation to solve regular tempered fractional Sturm-Liouville problem (TFSLP) using finite difference method. The tempered fractional differential operators considered here are of Caputo type. The numerically obtained eigenvalues are real, and the corresponding eigenfunctions are orthogonal. The obtained eigenfunctions work as basis functions of weighted Lebesgue integrable function spaceLw2(a,b). Further, the obtained eigenvalues and corresponding eigenfunctions are used to provide weak solution of the tempered fractional diffusion equation. Approximation and error bounds of the solution of the tempered fractional diffusion equation are provided.
引用
收藏
页码:610 / 627
页数:18
相关论文
共 50 条
  • [1] The fractional Sturm-Liouville problem-Numerical approximation and application in fractional diffusion
    Ciesielski, Mariusz
    Klimek, Malgorzata
    Blaszczyk, Tomasz
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 317 : 573 - 588
  • [2] A numerical approximation for generalized fractional Sturm-Liouville problem with application
    Goel, Eti
    Pandey, Rajesh K.
    Yadav, S.
    Agrawal, Om P.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2023, 207 : 417 - 436
  • [3] Sturm-Liouville problem and numerical method of fractional diffusion equation on fractals
    Zhang, Wenbiao
    Yi, Ming
    ADVANCES IN DIFFERENCE EQUATIONS, 2016,
  • [4] Numerical approximation to Prabhakar fractional Sturm-Liouville problem
    Derakhshan, Mohammad Hossein
    Ansari, Alireza
    COMPUTATIONAL & APPLIED MATHEMATICS, 2019, 38 (02):
  • [5] Sturm-Liouville problem and numerical method of fractional diffusion equation on fractals
    Wenbiao Zhang
    Ming Yi
    Advances in Difference Equations, 2016
  • [6] Application of the Fractional Sturm-Liouville Theory to a Fractional Sturm-Liouville Telegraph Equation
    Ferreira, M.
    Rodrigues, M. M.
    Vieira, N.
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2021, 15 (05)
  • [7] Applications of the Fractional Sturm-Liouville Difference Problem to the Fractional Diffusion Difference Equation
    Malinowska, Agnieszka B.
    Odzijewicz, Tatiana
    Poskrobko, Anna
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2023, 33 (03) : 349 - 359
  • [8] VARIATIONAL APPROXIMATION FOR FRACTIONAL STURM-LIOUVILLE PROBLEM
    Pandey, Prashant K.
    Pandey, Rajesh K.
    Agrawal, Om P.
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2020, 23 (03) : 861 - 874
  • [9] TEMPERED FRACTIONAL STURM-LIOUVILLE EIGENPROBLEMS
    Zayernouri, Mohsen
    Ainsworth, Mark
    Karniadakis, George Em
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (04): : A1777 - A1800
  • [10] Inverse problem for a space-time fractional diffusion equation: Application of fractional Sturm-Liouville operator
    Ali, Muhammad
    Aziz, Sara
    Malik, Salman A.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (07) : 2733 - 2747