Numerical approximation of tempered fractional Sturm-Liouville problem with application in fractional diffusion equation

被引:11
|
作者
Yadav, Swati [1 ]
Pandey, Rajesh K. [1 ]
Pandey, Prashant K. [1 ]
机构
[1] Indian Inst Technol BHU, Dept Math Sci, Varanasi, Uttar Pradesh, India
关键词
finite difference method; fractional Sturm-Liouville operators; numerical analysis; tempered fractional calculus; DIFFERENTIAL-EQUATIONS; MOTION;
D O I
10.1002/fld.4901
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we discuss the numerical approximation to solve regular tempered fractional Sturm-Liouville problem (TFSLP) using finite difference method. The tempered fractional differential operators considered here are of Caputo type. The numerically obtained eigenvalues are real, and the corresponding eigenfunctions are orthogonal. The obtained eigenfunctions work as basis functions of weighted Lebesgue integrable function spaceLw2(a,b). Further, the obtained eigenvalues and corresponding eigenfunctions are used to provide weak solution of the tempered fractional diffusion equation. Approximation and error bounds of the solution of the tempered fractional diffusion equation are provided.
引用
收藏
页码:610 / 627
页数:18
相关论文
共 50 条
  • [31] Variational Approach for Tempered Fractional Sturm–Liouville Problem
    Pandey P.K.
    Pandey R.K.
    Yadav S.
    Agrawal O.P.
    International Journal of Applied and Computational Mathematics, 2021, 7 (2)
  • [32] Applications of the Fractional Sturm-Liouville Problem to the Space-Time Fractional Diffusion in a Finite Domain
    Małgorzata Klimek
    Agnieszka B. Malinowska
    Tatiana Odzijewicz
    Fractional Calculus and Applied Analysis, 2016, 19 : 516 - 550
  • [33] APPLICATIONS OF THE FRACTIONAL STURM-LIOUVILLE PROBLEM TO THE SPACE-TIME FRACTIONAL DIFFUSION IN A FINITE DOMAIN
    Klimek, Malgorzata
    Malinowska, Agnieszka B.
    Odzijewicz, Tatiana
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2016, 19 (02) : 516 - 550
  • [34] Numerical Approximation for Fractional Diffusion Equation Forced by a Tempered Fractional Gaussian Noise
    Xing Liu
    Weihua Deng
    Journal of Scientific Computing, 2020, 84
  • [35] Numerical Approximation for Fractional Diffusion Equation Forced by a Tempered Fractional Gaussian Noise
    Liu, Xing
    Deng, Weihua
    JOURNAL OF SCIENTIFIC COMPUTING, 2020, 84 (01)
  • [36] Variational Approximation for Fractional Sturm–Liouville Problem
    Prashant K. Pandey
    Rajesh K. Pandey
    Om P. Agrawal
    Fractional Calculus and Applied Analysis, 2020, 23 : 861 - 874
  • [37] Approximation and convergence of generalized fractional Sturm-Liouville problem via integral form
    Goel, Eti
    Pandey, Rajesh K.
    JOURNAL OF ANALYSIS, 2024,
  • [38] On strong singular fractional version of the Sturm-Liouville equation
    Shabibi, Mehdi
    Zada, Akbar
    Masiha, Hashem Parvaneh
    Rezapour, Shahram
    BOUNDARY VALUE PROBLEMS, 2021, 2021 (01)
  • [39] Fractional hybrid inclusion version of the Sturm-Liouville equation
    Charandabi, Zohreh Zeinalabedini
    Rezapour, Shahram
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [40] Direct and inverse problems of fractional Sturm-Liouville equation
    Kalashmi, Zahra Kavousi
    Mirzaei, Hanif
    Ghanbari, Kazem
    OPTIMIZATION AND ENGINEERING, 2024,