Numerical approximation of tempered fractional Sturm-Liouville problem with application in fractional diffusion equation

被引:11
|
作者
Yadav, Swati [1 ]
Pandey, Rajesh K. [1 ]
Pandey, Prashant K. [1 ]
机构
[1] Indian Inst Technol BHU, Dept Math Sci, Varanasi, Uttar Pradesh, India
关键词
finite difference method; fractional Sturm-Liouville operators; numerical analysis; tempered fractional calculus; DIFFERENTIAL-EQUATIONS; MOTION;
D O I
10.1002/fld.4901
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we discuss the numerical approximation to solve regular tempered fractional Sturm-Liouville problem (TFSLP) using finite difference method. The tempered fractional differential operators considered here are of Caputo type. The numerically obtained eigenvalues are real, and the corresponding eigenfunctions are orthogonal. The obtained eigenfunctions work as basis functions of weighted Lebesgue integrable function spaceLw2(a,b). Further, the obtained eigenvalues and corresponding eigenfunctions are used to provide weak solution of the tempered fractional diffusion equation. Approximation and error bounds of the solution of the tempered fractional diffusion equation are provided.
引用
收藏
页码:610 / 627
页数:18
相关论文
共 50 条