Numerical approximation to Prabhakar fractional Sturm–Liouville problem

被引:0
|
作者
Mohammad Hossein Derakhshan
Alireza Ansari
机构
[1] Shahrekord University,Department of Applied Mathematics, Faculty of Mathematical Sciences
来源
关键词
Fractional Sturm–Liouville problem; Numerical solution; Fractional diffusion equation; Prabhakar fractional derivative; 26A33; 65L20; 70K20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we treat a numerical scheme for the regular fractional Sturm–Liouville problem containing the Prabhakar fractional derivatives with the mixed boundary conditions. We show that the eigenfunctions corresponding to distinct numerical eigenvalues are orthogonal in the Hilbert spaces. The numerical errors and convergence rates are also investigated. Further, we consider a space-fractional diffusion equation and study the associated fractional Sturm–Liouville problem along with the convergence analysis.
引用
收藏
相关论文
共 50 条
  • [31] APPROXIMATION PROCEDURES IN CONNECTION WITH A PROBLEM OF STURM-LIOUVILLE TYPE
    Mitrea, Alexandru, I
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2008, 53 (03): : 49 - 55
  • [32] A New Approximation For Singular Inverse Sturm-Liouville Problem
    Bas, Erdal
    Panakhov, Etibar
    THAI JOURNAL OF MATHEMATICS, 2012, 10 (03): : 685 - 692
  • [33] A CONVERGENT APPROXIMATION SCHEME FOR THE INVERSE STURM-LIOUVILLE PROBLEM
    SEIDMAN, TI
    INVERSE PROBLEMS, 1985, 1 (03) : 251 - 262
  • [34] A Fractional Analysis in Higher Dimensions for the Sturm-Liouville Problem
    Milton Ferreira
    M. Manuela Rodrigues
    Nelson Vieira
    Fractional Calculus and Applied Analysis, 2021, 24 : 585 - 620
  • [35] A FRACTIONAL ANALYSIS IN HIGHER DIMENSIONS FOR THE STURM-LIOUVILLE PROBLEM
    Ferreira, Milton
    Rodrigues, M. Manuela
    Vieira, Nelson
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2021, 24 (02) : 585 - 620
  • [36] On a nonlocal Sturm-Liouville problem with composite fractional derivatives
    Li, Jing
    Qi, Jiangang
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (02) : 1931 - 1941
  • [37] Fractional Sturm-Liouville Problem in Terms of Riesz Derivatives
    Klimek, Malgorzata
    THEORETICAL DEVELOPMENTS AND APPLICATIONS OF NON-INTEGER ORDER SYSTEMS, 2016, 357 : 3 - 16
  • [38] Application of the Fractional Sturm-Liouville Theory to a Fractional Sturm-Liouville Telegraph Equation
    Ferreira, M.
    Rodrigues, M. M.
    Vieira, N.
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2021, 15 (05)
  • [39] A NUMERICAL-METHOD FOR THE INVERSE STURM-LIOUVILLE PROBLEM
    PAINE, J
    SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1984, 5 (01): : 149 - 156
  • [40] Numerical solution of fractional Sturm-Liouville equation in integral form
    Tomasz Blaszczyk
    Mariusz Ciesielski
    Fractional Calculus and Applied Analysis, 2014, 17 : 307 - 320