Hadamard variational formula for eigenvalues of the Stokes equations and its application

被引:0
|
作者
Shuichi Jimbo
Hideo Kozono
Yoshiaki Teramoto
Erika Ushikoshi
机构
[1] Hokkaido University,Department of Mathematics
[2] Waseda University,Department of Mathematics
[3] Setsunan University,Institute for Fundamental Sciences
[4] Yokohama National University,Faculty of Environment and Information Sciences
来源
Mathematische Annalen | 2017年 / 368卷
关键词
35Q10;
D O I
暂无
中图分类号
学科分类号
摘要
Based on the explicit representation of the Hadamard variational formula [1] for eigenvalues of the Stokes equations, we investigate the geometry of the domain in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb R^3$$\end{document}. It turns out that if the first variation of some eigenvalue of the Stokes equations for all volume preserving perturbations vanishes, then the domain is necessarily diffeomorphic to the 2-dimensional torus T2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T^2$$\end{document}.
引用
收藏
页码:877 / 884
页数:7
相关论文
共 50 条
  • [31] A variational formula for controlled backward stochastic partial differential equations and some application
    Qing-xin Meng
    Mao-ning Tang
    Applied Mathematics-A Journal of Chinese Universities, 2014, 29 : 295 - 306
  • [32] THE ASYMPTOTICS OF EIGENVALUES OF LINEARIZED NAVIER-STOKES EQUATIONS
    BABENKO, KI
    DOKLADY AKADEMII NAUK SSSR, 1982, 263 (03): : 521 - 525
  • [33] Variational principle for the Navier-Stokes equations
    Kerswell, RR
    PHYSICAL REVIEW E, 1999, 59 (05): : 5482 - 5494
  • [34] Adaptive variational multiscale method for the Stokes equations
    Song, Lina
    Hou, Yanren
    Zheng, Haibiao
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2013, 71 (11) : 1369 - 1381
  • [35] A variational approach to the Navier-Stokes equations
    Gigli, Nicola
    Mosconi, Sunra J. N.
    BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (03): : 256 - 276
  • [36] A CONFORMING QUADRATIC POLYGONAL ELEMENT AND ITS APPLICATION TO STOKES EQUATIONS*
    Chen, Xinjiang
    Wang, Yanqiu
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2022, 40 (04): : 628 - 652
  • [38] Weyl formula for the negative dissipative eigenvalues of Maxwell's equations
    Colombini, Ferruccio
    Petkov, Vesselin
    ARCHIV DER MATHEMATIK, 2018, 110 (02) : 183 - 195
  • [39] The p-capacitary Orlicz–Hadamard variational formula and Orlicz–Minkowski problems
    Han Hong
    Deping Ye
    Ning Zhang
    Calculus of Variations and Partial Differential Equations, 2018, 57
  • [40] A SIMPLE SOLUTION FORMULA FOR THE STOKES EQUATIONS IN THE HALF SPACE
    Hirata, Daisuke
    BULLETIN OF THE INSTITUTE OF MATHEMATICS ACADEMIA SINICA NEW SERIES, 2023, 18 (02): : 225 - 233