The p-capacitary Orlicz–Hadamard variational formula and Orlicz–Minkowski problems

被引:0
|
作者
Han Hong
Deping Ye
Ning Zhang
机构
[1] Memorial University of Newfoundland,Department of Mathematics and Statistics
[2] University of Alberta,Department of Mathematical and Statistical Sciences
关键词
52B45; 52A20; 52A39; 31B15; 35J60; 53A15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, combining the p-capacity for p∈(1,n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\in (1, n)$$\end{document} with the Orlicz addition of convex domains, we develop the p-capacitary Orlicz–Brunn–Minkowski theory. In particular, the Orlicz Lϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{\phi }$$\end{document} mixed p-capacity of two convex domains is introduced and its geometric interpretation is obtained by the p-capacitary Orlicz–Hadamard variational formula. The p-capacitary Orlicz–Brunn–Minkowski and Orlicz–Minkowski inequalities are established, and the equivalence of these two inequalities are discussed as well. The p-capacitary Orlicz–Minkowski problem is proposed and solved under some mild conditions on the involving functions and measures. In particular, we provide the solutions for the normalized p-capacitary Lq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_q$$\end{document} Minkowski problems with q>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q>1$$\end{document} for both discrete and general measures.
引用
收藏
相关论文
共 28 条
  • [1] The p-capacitary Orlicz-Hadamard variational formula and Orlicz-Minkowski problems
    Hong, Han
    Ye, Deping
    Zhang, Ning
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (01)
  • [2] On the Polar Orlicz-Minkowski Problems and the p-capacitary Orlicz-Petty Bodies
    Luo, Xiaokang
    Ye, Deping
    Zhu, Baocheng
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2020, 69 (02) : 385 - 420
  • [3] On the Discrete Orlicz Electrostatic q-Capacitary Minkowski Problem
    Feng, Yibin
    Zhou, Yanping
    JOURNAL OF FUNCTION SPACES, 2020, 2020
  • [4] The Hadamard variational formula and the Minkowski problem for p-capacity
    Colesanti, A.
    Nystrom, K.
    Salani, P.
    Xiao, J.
    Yang, D.
    Zhang, G.
    ADVANCES IN MATHEMATICS, 2015, 285 : 1511 - 1588
  • [5] VARIATIONAL PROBLEMS IN ORLICZ SPACES AND SPLINES
    BAUMEISTER, J
    MANUSCRIPTA MATHEMATICA, 1977, 20 (01) : 29 - 49
  • [6] The Orlicz Minkowski problem for the electrostatic p-capacity
    Xiong, Ge
    Xiong, Jiawei
    ADVANCES IN APPLIED MATHEMATICS, 2022, 137
  • [7] The Discrete Orlicz-Minkowski Problem for p-Capacity
    Ji, Lewen
    Yang, Zhihui
    ACTA MATHEMATICA SCIENTIA, 2022, 42 (04) : 1403 - 1413
  • [8] The Discrete Orlicz-Minkowski Problem for p-Capacity
    Lewen Ji
    Zhihui Yang
    Acta Mathematica Scientia, 2022, 42 : 1403 - 1413
  • [9] Existence and uniqueness of solutions to Orlicz Minkowski problems involving 0 < p < 1
    Sun Yijing
    ADVANCES IN APPLIED MATHEMATICS, 2018, 101 : 184 - 214
  • [10] Strongly nonlinear elliptic variational unilateral problems in orlicz space
    Aharouch, L.
    Benkirane, A.
    Rhoudaf, M.
    ABSTRACT AND APPLIED ANALYSIS, 2006, : 1 - 20