In this paper, combining the p-capacity for p∈(1,n)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$p\in (1, n)$$\end{document} with the Orlicz addition of convex domains, we develop the p-capacitary Orlicz–Brunn–Minkowski theory. In particular, the Orlicz Lϕ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L_{\phi }$$\end{document} mixed p-capacity of two convex domains is introduced and its geometric interpretation is obtained by the p-capacitary Orlicz–Hadamard variational formula. The p-capacitary Orlicz–Brunn–Minkowski and Orlicz–Minkowski inequalities are established, and the equivalence of these two inequalities are discussed as well. The p-capacitary Orlicz–Minkowski problem is proposed and solved under some mild conditions on the involving functions and measures. In particular, we provide the solutions for the normalized p-capacitary Lq\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L_q$$\end{document} Minkowski problems with q>1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$q>1$$\end{document} for both discrete and general measures.
机构:
Hexi Univ, Sch Math & Stat, Zhangye 734000, Peoples R ChinaHexi Univ, Sch Math & Stat, Zhangye 734000, Peoples R China
Feng, Yibin
Zhou, Yanping
论文数: 0引用数: 0
h-index: 0
机构:
China Three Gorges Univ, Dept Math, Yichang 443002, Peoples R China
CTGU, Three Gorges Math Res Ctr, Yichang 443002, Peoples R ChinaHexi Univ, Sch Math & Stat, Zhangye 734000, Peoples R China
机构:
East China Univ Technol, Sch Sci, Nanchang 330013, Jiangxi, Peoples R ChinaEast China Univ Technol, Sch Sci, Nanchang 330013, Jiangxi, Peoples R China
Ji, Lewen
Yang, Zhihui
论文数: 0引用数: 0
h-index: 0
机构:
East China Univ Technol, Sch Sci, Nanchang 330013, Jiangxi, Peoples R ChinaEast China Univ Technol, Sch Sci, Nanchang 330013, Jiangxi, Peoples R China