The p-capacitary Orlicz–Hadamard variational formula and Orlicz–Minkowski problems

被引:0
|
作者
Han Hong
Deping Ye
Ning Zhang
机构
[1] Memorial University of Newfoundland,Department of Mathematics and Statistics
[2] University of Alberta,Department of Mathematical and Statistical Sciences
关键词
52B45; 52A20; 52A39; 31B15; 35J60; 53A15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, combining the p-capacity for p∈(1,n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\in (1, n)$$\end{document} with the Orlicz addition of convex domains, we develop the p-capacitary Orlicz–Brunn–Minkowski theory. In particular, the Orlicz Lϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{\phi }$$\end{document} mixed p-capacity of two convex domains is introduced and its geometric interpretation is obtained by the p-capacitary Orlicz–Hadamard variational formula. The p-capacitary Orlicz–Brunn–Minkowski and Orlicz–Minkowski inequalities are established, and the equivalence of these two inequalities are discussed as well. The p-capacitary Orlicz–Minkowski problem is proposed and solved under some mild conditions on the involving functions and measures. In particular, we provide the solutions for the normalized p-capacitary Lq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_q$$\end{document} Minkowski problems with q>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q>1$$\end{document} for both discrete and general measures.
引用
收藏
相关论文
共 28 条