Asymmetric dual-k spacer trigate FinFET for enhanced analog/RF performance

被引:0
|
作者
Gaurav Saini
Sudhanshu Choudhary
机构
[1] NIT Kurukshetra,Department of Electronics and Communication Engineering
[2] NIT Kurukshetra,School of VLSI Design and Embedded Systems
来源
关键词
Analog FOM; Asymmetric dual-k spacer; Short channel effects; Transconductance; Trigate FinFET;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we aim to explore the potential benefits of using source side only dual-k spacer (Dual-kS) trigate FinFET structure to improve the analog/RF figure of merit (FOM) for low power operation at 20 nm gate length. It has been observed from the results that Dual-kS (inner spacer high-k) FinFET structure improves the coupling of the gate fringe field to the underlap region towards the source side and results into improvement in transconductance (gm)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(g_{m})$$\end{document} and output conductance (gds)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(g_{ds})$$\end{document}. It was also found that drain side only dual-k spacer (Dual-kD) improves the coupling of the gate fringe field to the underlap region towards the drain side which helps to shift away the drain field from gate edge and results into improvement in output conductance (gds)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(g_{ds})$$\end{document} only at the cost of increase in Miller capacitance. A comparative simulation study has been performed on four different device structures namely both side low-k spacers (conventional), both side dual-k spacer (Dual-kB), Dual-kD and Dual-kS structures. From the simulation study, it was found that that Dual-kS structure has potential to improve gm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_{m}$$\end{document} by ∼\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim $$\end{document}8.7 %, gds\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_{ds}$$\end{document} by ∼\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim $$\end{document}32.24 %, intrinsic gain (AV0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(A_{V0})$$\end{document} by ∼\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim $$\end{document}11.44 %, early voltage (VEA)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(V_{EA})$$\end{document} by ∼\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim $$\end{document}47.59 %, maximum oscillation frequency (fMAX\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_{MAX}$$\end{document}) by ∼\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim $$\end{document}1.7 % and the ratio of gate-source capacitance and gate-drain capacitance (Cgs/Cgd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(C_{gs}/C_{gd})$$\end{document} by ∼\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim $$\end{document}15.27 % with a slight reduction in the value of unity gain cut-off frequency (fT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_{T}$$\end{document}) by ∼\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim $$\end{document}0.58 % in comparison to the conventional structure at drain current (Ids)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(I_{ds})$$\end{document} of 10μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10\,\upmu $$\end{document}A/μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu $$\end{document}m. Furthermore, to reduce the drain field influence on the channel region, we also studied the effect of asymmetric drain extension length on Dual-kS FinFET structure.
引用
收藏
页码:84 / 93
页数:9
相关论文
共 50 条
  • [1] Asymmetric dual-k spacer trigate FinFET for enhanced analog/RF performance
    Saini, Gaurav
    Choudhary, Sudhanshu
    [J]. JOURNAL OF COMPUTATIONAL ELECTRONICS, 2016, 15 (01) : 84 - 93
  • [2] Investigation on Asymmetric Dual-k Spacer (ADS) Trigate Wavy FinFET: A Novel Device
    Pradhan, K. P.
    Sahu, P. K.
    Ranjan, Rajeev
    [J]. PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON DEVICES, CIRCUITS AND SYSTEMS (ICDCS) 2016, 2016, : 137 - 140
  • [3] Impact of dual-k spacer on analog performance of underlap FinFET
    Nandi, Ashutosh
    Saxena, Ashok K.
    Dasgupta, S.
    [J]. MICROELECTRONICS JOURNAL, 2012, 43 (11) : 883 - 887
  • [4] Investigation of trigate JLT with dual-k sidewall spacers for enhanced analog/RF FOMs
    Saini, Gaurav
    Choudhary, Sudhanshu
    [J]. JOURNAL OF COMPUTATIONAL ELECTRONICS, 2016, 15 (03) : 865 - 873
  • [5] Investigation of trigate JLT with dual-k sidewall spacers for enhanced analog/RF FOMs
    Gaurav Saini
    Sudhanshu Choudhary
    [J]. Journal of Computational Electronics, 2016, 15 : 865 - 873
  • [6] Effect of Asymmetric Doping on Asymmetric underlap Dual-k Spacer FinFET
    Gopal, Maisagalla
    Vishvakarma, Santosh Kumar
    [J]. 2015 ANNUAL IEEE INDIA CONFERENCE (INDICON), 2015,
  • [7] Analog/RF performance of source-side only dual-k sidewall spacer trigate junctionless transistor with parametric variations
    Saini, Gaurav
    Choudhary, Sudhanshu
    [J]. SUPERLATTICES AND MICROSTRUCTURES, 2016, 100 : 757 - 766
  • [8] Dual-k Spacer Region Variation at the Drain Side of Asymmetric SOI FinFET Structure: Performance Analysis Towards the Analog/RF Design Applications
    Jain, Neeraj
    Raj, Bawinder
    [J]. JOURNAL OF NANOELECTRONICS AND OPTOELECTRONICS, 2019, 14 (03) : 349 - 359
  • [9] Parasitic Capacitances of Dual-K Spacer FinFET
    Bisnoi, Shilpa
    Dasgupta, Sudeb
    [J]. 2016 CONFERENCE ON EMERGING DEVICES AND SMART SYSTEMS (ICEDSS), 2016, : 34 - 36
  • [10] Physical Insights Into Electric Field Modulation in Dual-k Spacer Asymmetric Underlap FinFET
    Dutta, Arka
    Koley, Kalyan
    Saha, Samar K.
    Sarkar, Chandan Kumar
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2016, 63 (08) : 3019 - 3027