共 50 条
Extending Structures for Lie Conformal Algebras
被引:0
|作者:
Yanyong Hong
Yucai Su
机构:
[1] Zhejiang Agriculture and Forestry University,College of Science
[2] Tongji University,Department of Mathematics
来源:
关键词:
Lie conformal algebra;
Extending structures problem;
Crossed product;
Bicrossed product;
Unified product;
17A30;
17D25;
17A60;
18G60;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
The ℂ[∂]\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathbb {C}[\partial ]$\end{document}-split extending structures problem for Lie conformal algebras is studied. In this paper, we introduce the definition of unified product of a given Lie conformal algebra R and a given ℂ[∂]\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathbb {C}[\partial ]$\end{document}-module Q. This product includes some other interesting products of Lie conformal algebras such as twisted product, crossed product, and bicrossed product. Using this product, a cohomological type object is constructed to provide a theoretical answer to the ℂ[∂]\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathbb {C}[\partial ]$\end{document}-split extending structures problem. Moreover, using this general theory, we investigate crossed product and bicrossed product in detail, which give the answers for the ℂ[∂]\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathbb {C}[\partial ]$\end{document}-split extension problem and the ℂ[∂]\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathbb {C}[\partial ]$\end{document}-split factorization problem respectively.
引用
收藏
页码:209 / 230
页数:21
相关论文