Extending Structures for Lie Conformal Algebras

被引:0
|
作者
Yanyong Hong
Yucai Su
机构
[1] Zhejiang Agriculture and Forestry University,College of Science
[2] Tongji University,Department of Mathematics
来源
关键词
Lie conformal algebra; Extending structures problem; Crossed product; Bicrossed product; Unified product; 17A30; 17D25; 17A60; 18G60;
D O I
暂无
中图分类号
学科分类号
摘要
The ℂ[∂]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {C}[\partial ]$\end{document}-split extending structures problem for Lie conformal algebras is studied. In this paper, we introduce the definition of unified product of a given Lie conformal algebra R and a given ℂ[∂]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {C}[\partial ]$\end{document}-module Q. This product includes some other interesting products of Lie conformal algebras such as twisted product, crossed product, and bicrossed product. Using this product, a cohomological type object is constructed to provide a theoretical answer to the ℂ[∂]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {C}[\partial ]$\end{document}-split extending structures problem. Moreover, using this general theory, we investigate crossed product and bicrossed product in detail, which give the answers for the ℂ[∂]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {C}[\partial ]$\end{document}-split extension problem and the ℂ[∂]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {C}[\partial ]$\end{document}-split factorization problem respectively.
引用
收藏
页码:209 / 230
页数:21
相关论文
共 50 条
  • [31] Extensions of the conformal representations for orthogonal Lie algebras
    Xu, Xiaoping
    Zhao, Yufeng
    JOURNAL OF ALGEBRA, 2013, 377 : 97 - 124
  • [32] LIE CONFORMAL ALGEBRAS OF PLANAR GALILEAN TYPE
    Han, Xiu
    Wang, Dengyin
    Xia, Chunguang
    REPORTS ON MATHEMATICAL PHYSICS, 2018, 81 (02) : 185 - 200
  • [33] Conformal Lie algebras via deformation theory
    Figueroa-O'Farrill, Jose M.
    JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (02)
  • [34] Conformal oscillator representations of orthogonal Lie algebras
    XU XiaoPing
    Science China(Mathematics), 2016, 59 (01) : 37 - 48
  • [35] Classification of rank two Lie conformal algebras
    Biswal, Rekha
    Chakhar, Abdelkarim
    He, Xiao
    JOURNAL OF THE RAMANUJAN MATHEMATICAL SOCIETY, 2021, 36 (03) : 203 - 219
  • [36] Finite irreducible modules of Lie conformal algebras W(a, b) and some Schrodinger-Virasoro type Lie conformal algebras
    Luo, Lipeng
    Hong, Yanyong
    Wu, Zhixiang
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2019, 30 (06)
  • [37] Extending structures for dendriform algebras
    Zhang, Yuanyuan
    Wang, Junwen
    JOURNAL OF ALGEBRA, 2025, 664 : 671 - 718
  • [38] Extensions of conformal modules over Lie conformal algebras of Block type
    Su, Yucai
    Xia, Chunguang
    Yuan, Lamei
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2020, 224 (05)
  • [39] Finite irreducible conformal modules of rank two Lie conformal algebras
    Xu, Maosen
    Hong, Yanyong
    Wu, Zhixiang
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2021, 20 (08)
  • [40] Novikov algebras and Novikov structures on Lie algebras
    Burde, Dietrich
    Dekimpe, Karel
    Vercammen, Kim
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 429 (01) : 31 - 41