Extensions of conformal modules over Lie conformal algebras of Block type

被引:10
|
作者
Su, Yucai [1 ]
Xia, Chunguang [2 ]
Yuan, Lamei [3 ]
机构
[1] Tongji Univ, Sch Math Sci, Shanghai 200092, Peoples R China
[2] China Univ Min & Technol, Sch Math, Xuzhou 221116, Jiangsu, Peoples R China
[3] Harbin Inst Technol, Dept Math, Harbin 150080, Peoples R China
基金
中国国家自然科学基金;
关键词
Extension; Finite conformal module; Lie conformal algebras of Block type; CLASSIFICATION; SUBALGEBRAS; COHOMOLOGY;
D O I
10.1016/j.jpaa.2019.106232
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We classify extensions between finite irreducible conformal modules over a class of infinite Lie conformal algebras B(p) of Block type, where p is a nonzero complex number. We find that although certain finite irreducible conformal modules over B(p) are simply conformal modules over its Virasoro conformal subalgebra Dir, there exist more nontrivial extensions between these conformal B (p)-modules. For extensions between other conformal modules, the situation becomes rather different. As an application, we also solve the extension problem for a series of finite Lie conformal algebras b(n) for n >= 1. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:24
相关论文
共 50 条