Classification of finite irreducible conformal modules over Lie conformal superalgebras of Block type

被引:13
|
作者
Xia, Chunguang [1 ]
机构
[1] China Univ Min & Technol, Sch Math, Xuzhou 221116, Jiangsu, Peoples R China
关键词
Finite conformal module; Lie conformal algebras; Neveu-Schwarz conformal algebra; QUASIFINITE REPRESENTATIONS; ALGEBRAS;
D O I
10.1016/j.jalgebra.2019.05.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a class of infinite Lie conformal superalgebras G(p) of Block type, and classify their finite irreducible conformal modules for any nonzero parameter p. In particular, we show that such a conformal module admits a nontrivial extension of a finite conformal module over NG if p = -1, where NG is a Neveu-Schwarz conformal subalgebra of G(p). As a byproduct, we also obtain the classification of finite irreducible conformal modules over a series of finite Lie conformal superalgebras s(n) for n >= 1. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:141 / 164
页数:24
相关论文
共 50 条