The geodesic flow of a sub-Riemannian metric on a solvable Lie group

被引:0
|
作者
Mazhitova A.D. [1 ]
机构
[1] Al Farabi Kazakh State University, Almaty
关键词
geodesics; Hamiltonian; left-invariant metric; sub-Riemannian geometry;
D O I
10.3103/S1055134413020041
中图分类号
学科分类号
摘要
We consider the sub-Riemannian problem on the three-dimensional solvable Lie group SOLV+. The problem is based on constructing a Hamiltonian structure for a given metric by the Pontryagin Maximum Principle. © 2013 Allerton Press, Inc.
引用
收藏
页码:99 / 105
页数:6
相关论文
共 50 条
  • [31] Almost multiplicity free subgroups of compact Lie groups and polynomial integrability of sub-Riemannian geodesic flows
    Jovanovic, Bozidar
    Sukilovic, Tijana
    Vukmirovic, Srdjan
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2024, 114 (01)
  • [32] Almost multiplicity free subgroups of compact Lie groups and polynomial integrability of sub-Riemannian geodesic flows
    Božidar Jovanović
    Tijana Šukilović
    Srdjan Vukmirović
    [J]. Letters in Mathematical Physics, 114
  • [33] On geodesic equivalence of Riemannian metrics and sub-Riemannian metrics on distributions of corank 1
    Zelenko I.
    [J]. Journal of Mathematical Sciences, 2006, 135 (4) : 3168 - 3194
  • [34] Integrability and nonintegrability of sub-Riemannian geodesic flows on Carnot groups
    Bizyaev, Ivan A.
    Borisov, Alexey V.
    Kilin, Alexander A.
    Mamaev, Ivan S.
    [J]. REGULAR & CHAOTIC DYNAMICS, 2016, 21 (06): : 759 - 774
  • [35] Integrability and nonintegrability of sub-Riemannian geodesic flows on Carnot groups
    Ivan A. Bizyaev
    Alexey V. Borisov
    Alexander A. Kilin
    Ivan S. Mamaev
    [J]. Regular and Chaotic Dynamics, 2016, 21 : 759 - 774
  • [36] Any sub-Riemannian metric has points of smoothness
    A. A. Agrachev
    [J]. Doklady Mathematics, 2009, 79 : 45 - 47
  • [37] Cut Locus and Optimal Synthesis in Sub-Riemannian Problem on the Lie Group SH(2)
    Butt, Yasir Awais
    Sachkov, Yuri L.
    Bhatti, Aamer Iqbal
    [J]. JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2017, 23 (01) : 155 - 195
  • [38] SUB-RIEMANNIAN DISTANCE ON THE LIE GROUP SO0(2,1)
    Berestovskii, V. N.
    Zubareva, I. A.
    [J]. ST PETERSBURG MATHEMATICAL JOURNAL, 2017, 28 (04) : 477 - 489
  • [39] Maxwell Strata and Conjugate Points in the Sub-Riemannian Problem on the Lie Group SH(2)
    Butt, Yasir Awais
    Sachkov, Yuri L.
    Bhatti, Aamer Iqbal
    [J]. JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2016, 22 (04) : 747 - 770
  • [40] Maxwell Strata and Conjugate Points in the Sub-Riemannian Problem on the Lie Group SH(2)
    Yasir Awais Butt
    Yuri L. Sachkov
    Aamer Iqbal Bhatti
    [J]. Journal of Dynamical and Control Systems, 2016, 22 : 747 - 770