Almost multiplicity free subgroups of compact Lie groups and polynomial integrability of sub-Riemannian geodesic flows

被引:0
|
作者
Božidar Jovanović
Tijana Šukilović
Srdjan Vukmirović
机构
[1] Serbian Academy of Sciences and Arts,Mathematical Institute
[2] University of Belgrade,Faculty of Mathematics
关键词
Invariant polynomials; Gel’fand-Cetlin systems; Multiplicity of Hamiltonian action; (almost) multiplicity free spaces; 37J35; 17B63; 17B80; 53D20;
D O I
暂无
中图分类号
学科分类号
摘要
We classify almost multiplicity free subgroups K of compact simple Lie groups G. The problem is related to the integrability of Riemannian and sub-Riemannian geodesic flows of left-invariant metrics defined by a specific extension of integrable systems from T∗K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T^*K$$\end{document} to T∗G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T^*G$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] Almost multiplicity free subgroups of compact Lie groups and polynomial integrability of sub-Riemannian geodesic flows
    Jovanovic, Bozidar
    Sukilovic, Tijana
    Vukmirovic, Srdjan
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2024, 114 (01)
  • [2] Integrability and nonintegrability of sub-Riemannian geodesic flows on Carnot groups
    Bizyaev, Ivan A.
    Borisov, Alexey V.
    Kilin, Alexander A.
    Mamaev, Ivan S.
    [J]. REGULAR & CHAOTIC DYNAMICS, 2016, 21 (06): : 759 - 774
  • [3] Integrability and nonintegrability of sub-Riemannian geodesic flows on Carnot groups
    Ivan A. Bizyaev
    Alexey V. Borisov
    Alexander A. Kilin
    Ivan S. Mamaev
    [J]. Regular and Chaotic Dynamics, 2016, 21 : 759 - 774
  • [4] Riemannian and Sub-Riemannian Geodesic Flows
    Godoy Molina, Mauricio
    Grong, Erlend
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2017, 27 (02) : 1260 - 1273
  • [5] Riemannian and Sub-Riemannian Geodesic Flows
    Mauricio Godoy Molina
    Erlend Grong
    [J]. The Journal of Geometric Analysis, 2017, 27 : 1260 - 1273
  • [6] LENGTH SPECTRA OF SUB-RIEMANNIAN METRICS ON COMPACT LIE GROUPS
    Domokos, Andras
    Krauel, Matthew
    Pigno, Vincent
    Shanbrom, Corey
    VanValkenburgh, Michael
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2018, 296 (02) : 321 - 340
  • [7] Examples of Integrable Sub-Riemannian Geodesic Flows
    B. Kruglikov
    [J]. Journal of Dynamical and Control Systems, 2002, 8 : 323 - 340
  • [8] Examples of integrable sub-Riemannian geodesic flows
    Kruglikov, B
    [J]. JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2002, 8 (03) : 323 - 340
  • [9] MULTIPLICITY FREE SUBGROUPS OF COMPACT CONNECTED LIE GROUPS
    KRAMER, M
    [J]. ARCHIV DER MATHEMATIK, 1976, 27 (01) : 28 - 36
  • [10] Harmonic maps into sub-Riemannian Lie groups
    Grong, Erlend
    Markina, Irina
    [J]. COMMUNICATIONS IN ANALYSIS AND MECHANICS, 2023, 15 (03): : 515 - 532