Superexponential Stability of Quasi-Periodic Motion in Hamiltonian Systems

被引:0
|
作者
Abed Bounemoura
Bassam Fayad
Laurent Niederman
机构
[1] CNRS-CEREMADE-IMCCE/ASD,
[2] CNRS-IMJ-PRG and Centro Ennio De Giorgi,undefined
[3] Laboratoire Mathématiques d’Orsay and IMCCE/ASD,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We prove that generically, both in a topological and measure-theoretical sense, an invariant Lagrangian Diophantine torus of a Hamiltonian system is superexponentially stable in the sense that nearby solutions remain close to the torus for an interval of time which dominate any time that is exponentially large with respect to the inverse of the distance to the torus. More specifically, we prove stability over times that are doubly exponentially large with respect to the inverse of the distance to the torus. We also prove that for an arbitrary small perturbation of a generic integrable Hamiltonian system, there exists a set of almost full positive Lebesgue measure of KAM tori which are superexponentially stable with the previous estimates. Our results hold true for real-analytic but more generally for Gevrey smooth systems.
引用
收藏
页码:361 / 386
页数:25
相关论文
共 50 条
  • [31] Robust stability of quasi-periodic hybrid dynamic uncertain systems
    Li, ZG
    Soh, YC
    Wen, CY
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2001, 46 (01) : 107 - 111
  • [32] Degenerate Resonances and Synchronization in Nearly Hamiltonian Systems Under Quasi-periodic Perturbations
    Morozov, Albert D.
    Morozov, Kirill E.
    [J]. REGULAR & CHAOTIC DYNAMICS, 2022, 27 (05): : 572 - 585
  • [33] The complex Hamiltonian systems and quasi-periodic solutions in the derivative nonlinear Schrodinger equations
    Chen, Jinbing
    Zhang, Runsu
    [J]. STUDIES IN APPLIED MATHEMATICS, 2020, 145 (02) : 153 - 178
  • [34] Degenerate Resonances and Synchronization in Nearly Hamiltonian Systems Under Quasi-periodic Perturbations
    Albert D. Morozov
    Kirill E. Morozov
    [J]. Regular and Chaotic Dynamics, 2022, 27 : 572 - 585
  • [35] THE SYMMETRY OF QUASI-PERIODIC SYSTEMS
    JANSSEN, T
    [J]. ACTA CRYSTALLOGRAPHICA SECTION A, 1991, 47 : 243 - 255
  • [36] THEORY OF QUASI-PERIODIC SYSTEMS
    ROSEAU, M
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1972, 274 (11): : 903 - &
  • [37] Flow Map Parameterization Methods for Invariant Tori in Quasi-Periodic Hamiltonian Systems
    Fernandez-Mora, Alvaro
    Haro, Alex
    Mondelo, J. M.
    [J]. SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2024, 23 (01): : 127 - 166
  • [38] Quasi-Periodic Solutions and Stability for a Weakly Damped Nonlinear Quasi-Periodic Mathieu Equation
    K. Guennoun
    M. Houssni
    M. Belhaq
    [J]. Nonlinear Dynamics, 2002, 27 : 211 - 236
  • [39] Normal linear stability of quasi-periodic tori in the Hamiltonian 1: 1 resonance case
    Broer, HW
    Hoo, J
    Naudot, V
    [J]. EQUADIFF 2003: INTERNATIONAL CONFERENCE ON DIFFERENTIAL EQUATIONS, 2005, : 708 - 713
  • [40] Analysis of grazing bifurcation from periodic motion to quasi-periodic motion in impact-damper systems
    Wen, Guilin
    Yin, Shan
    Xu, Huidong
    Zhang, Sijin
    Lv, Zengyao
    [J]. CHAOS SOLITONS & FRACTALS, 2016, 83 : 112 - 118