Analysis of grazing bifurcation from periodic motion to quasi-periodic motion in impact-damper systems

被引:17
|
作者
Wen, Guilin [1 ]
Yin, Shan [1 ]
Xu, Huidong [2 ]
Zhang, Sijin [1 ]
Lv, Zengyao [1 ]
机构
[1] Hunan Univ, State Key Lab Adv Design & Manufacture Vehicle Bo, Coll Mech & Vehicle Engn, Changsha 410082, Hunan, Peoples R China
[2] Taiyuan Univ Technol, Coll Mech, Taiyuan 030024, Shanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Discontinuous grazing bifurcation; Quasi-periodic attractor; Lyapunov exponents; Basins of attraction; HOPF-BIFURCATION; BEHAVIOR; MAPS;
D O I
10.1016/j.chaos.2015.11.039
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A peculiar discontinuous bifurcation phenomenon that the periodic solution directly jumps to quasi-periodic attractor through grazing bifurcation is reported in this paper. This phenomenon is revealed in the impact damper system by the spectrum of the largest Lyapunov exponent in parameter plane. The origin of the quasi-periodic attractor and coexistence of solutions are analyzed. And the MDCM (multi-DOF cell mapping) method is used to reveal the variety of attraction basins of solutions. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:112 / 118
页数:7
相关论文
共 50 条
  • [1] Instability phenomena in impact damper system: From quasi-periodic motion to period-three motion
    Yin, Shan
    Wen, Guilin
    Shen, Yongkang
    Xu, Huidong
    [J]. JOURNAL OF SOUND AND VIBRATION, 2017, 391 : 170 - 179
  • [2] The Hopf bifurcation and quasi-periodic characters of inverse pendulum motion
    Gao, Ming
    Tan, Yunliang
    Teng, Guirong
    Chen, Junguo
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON MECHANICAL ENGINEERING AND MECHANICS 2007, VOLS 1 AND 2, 2007, : 1419 - 1422
  • [3] GENERATION OF QUASI-PERIODIC MOTION FROM A FAMILY OF PERIODIC MOTIONS
    ARNOLD, VI
    [J]. DOKLADY AKADEMII NAUK SSSR, 1961, 138 (01): : 13 - &
  • [4] Superexponential Stability of Quasi-Periodic Motion in Hamiltonian Systems
    Abed Bounemoura
    Bassam Fayad
    Laurent Niederman
    [J]. Communications in Mathematical Physics, 2017, 350 : 361 - 386
  • [5] Superexponential Stability of Quasi-Periodic Motion in Hamiltonian Systems
    Bounemoura, Abed
    Fayad, Bassam
    Niederman, Laurent
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 350 (01) : 361 - 386
  • [6] Design of quasi-periodic impact motion of an impact shaker system
    [J]. Wen, Gui-Lin (glwen@hnu.edu.cn), 1600, Hunan University (43):
  • [7] STABILIZATION OF PERIODIC AND QUASI-PERIODIC MOTION IN CHAOTIC SYSTEMS THROUGH CHANGES IN THE SYSTEM VARIABLES
    GUEMEZ, J
    GUTIERREZ, JM
    IGLESIAS, A
    MATIAS, MA
    [J]. PHYSICS LETTERS A, 1994, 190 (5-6) : 429 - 433
  • [8] MARGINAL LOCAL INSTABILITY OF QUASI-PERIODIC MOTION
    CASATI, G
    CHIRIKOV, BV
    FORD, J
    [J]. PHYSICS LETTERS A, 1980, 77 (2-3) : 91 - 94
  • [9] A QUANTUM ANALOG TO THE CLASSICAL QUASI-PERIODIC MOTION
    HOSE, G
    TAYLOR, HS
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1982, 76 (11): : 5356 - 5364
  • [10] Quasi-periodic rapid motion of pulsating auroras
    Fukuda, Yoko
    Kataoka, Ryuho
    Miyoshi, Yoshizumi
    Katoh, Yuto
    Nishiyama, Takanori
    Shiokawa, Kazuo
    Ebihara, Yusuke
    Hampton, Donald
    Iwagami, Naomoto
    [J]. POLAR SCIENCE, 2016, 10 (03) : 183 - 191