Phase Relations in CaSiO3 System up to 100 GPa and 2500 K

被引:0
|
作者
D. N. Sagatova
A. F. Shatskiy
N. E. Sagatov
K. D. Litasov
机构
[1] Novosibirsk State University,
[2] Sobolev Institute of Geology and Mineralogy,undefined
[3] Siberian Branch,undefined
[4] Russian Academy of Science,undefined
[5] Vereshchagin Institute for High Pressure Physics,undefined
[6] Russian Academy of Science,undefined
来源
关键词
wollastonite; breyite; perovskite; larnite; mantle; density functional theory; quasi-harmonic approximation;
D O I
暂无
中图分类号
学科分类号
摘要
Phase relations in one of the key petrological systems, CaSiO3, have been comprehensively investigated for the first time in the pressure range 0–100 GPa and temperatures 0–2500 K within the density functional theory using the method of lattice dynamics in the quasi-harmonic approximation. The results showed that at atmospheric pressure and 0 K CaSiO3 is stable in the wollastonite structure, which above 1250 K transforms to the high-temperature pseudowollastonite modification. Above a pressure of 4 GPa, CaSiO3 is stable in the breyite structure. The phase equilibrium curve has a negative slope of dP/dT = –0.6 MPa/K. At 8 GPa, CaSiO3 decomposes into an assemblage of Ca2SiO4-larnite and titanite-structured CaSi2O5. The phase equilibrium curve has a positive slope of dP/dT = 1.35 MPa/K. At a pressure of 13 GPa, Ca2SiO4-larnite reacts with CaSi2O5, forming a phase with a perovskite-like structure – CaSiO3-perovskite. The pressure of this phase transition is practically independent of temperature. In the low-temperature region, Ca-perovskite is stable in the tetragonal modification CaSiO3-I4/mcm. Above 340 K at 13 GPa, Ca-perovskite is stable in the cubic modification CaSiO3-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Pm\bar {3}m.$$\end{document} The phase transition temperature increases to 755 K with pressure increase to 100 GPa. The thermodynamic parameters were also calculated for the first time for wollastonite, pseudowollastonite, and titanite-structured CaSi2O5.
引用
收藏
页码:791 / 800
页数:9
相关论文
共 50 条
  • [41] Effects of Cu doping on phase composition, crystal structure, and dielectric properties of CaSiO3 ceramics
    Wang, Gang
    Lin, Zehui
    Li, Menghong
    He, Jiaqi
    Li, Mingwei
    Li, Yutong
    Xiao, Haiqiang
    Lai, Yuanming
    Han, Jiao
    Liu, Jisong
    Zeng, Yiming
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2023, 34 (09)
  • [42] Effect of reinforcement of sustainable β-CaSiO3 nanoparticles in bio-based epoxy resin system
    Rangari, V.K. (rangariv@mytu.tuskegee.edu), 1600, John Wiley and Sons Inc (131):
  • [43] Mechanically Strong CaSiO3 Scaffolds Incorporating B2O3-ZnO Liquid Phase
    Shuai, Cijun
    Duan, Songlin
    Gao, Dan
    Wu, Ping
    Gao, Chengde
    Yang, Youwen
    Liu, Long
    Yuan, Fulai
    Yang, Sheng
    Feng, Pei
    APPLIED SCIENCES-BASEL, 2017, 7 (04):
  • [44] Effect of Reinforcement of Sustainable β-CaSiO3 Nanoparticles in Bio-Based Epoxy Resin System
    Tiimob, Boniface J.
    Rangari, Vijaya K.
    Jeelani, Shaik
    JOURNAL OF APPLIED POLYMER SCIENCE, 2014, 131 (19)
  • [45] Phase transition, microstructure and microwave dielectric properties of α-CaSiO3 ceramics with SiO2 addition
    Hu, Wei
    Liu, Hanxing
    Hao, Hua
    Yao, Zhonghua
    Cao, Minghe
    Wang, Zhijian
    Song, Zhe
    He, Haobo
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2015, 26 (03) : 1977 - 1981
  • [46] Phase transition in Al-bearing CaSiO3 perovskite:: implications for seismic discontinuities in the lower mantle
    Kurashina, T
    Hirose, K
    Ono, S
    Sata, N
    Ohishi, Y
    PHYSICS OF THE EARTH AND PLANETARY INTERIORS, 2004, 145 (1-4) : 67 - 74
  • [47] Phase diagram of antimony up to 31 GPa and 835 K
    Coleman, A. L.
    Stevenson, M.
    McMahon, M. I.
    Macleod, S. G.
    PHYSICAL REVIEW B, 2018, 97 (14)
  • [48] Phase relations in boron at pressures up to 18 GPa and temperatures up to 2200°C
    Qin, Jiaqian
    Irifune, Tetsuo
    Dekura, Haruhiko
    Ohfuji, Hiroaki
    Nishiyama, Norimasa
    Lei, Li
    Shinmei, Toru
    PHYSICAL REVIEW B, 2012, 85 (01)
  • [49] Subsolidus phase relations in hydrous ultramatic systems up to 6.5 GPa
    Fumagalli, P
    LITHOS, 2004, 73 (1-2) : S40 - S40
  • [50] Estimation of Accumulation of Chromium Ion Impurities in the CaSiO3 and MgSiO3 Phases of the Earth’s Lower Mantle at Pressures of 18–25 GPa
    E. I. Marchenko
    A. V. Bobrov
    N. N. Eremin
    Doklady Earth Sciences, 2019, 488 : 1203 - 1206