Phase Relations in CaSiO3 System up to 100 GPa and 2500 K

被引:0
|
作者
D. N. Sagatova
A. F. Shatskiy
N. E. Sagatov
K. D. Litasov
机构
[1] Novosibirsk State University,
[2] Sobolev Institute of Geology and Mineralogy,undefined
[3] Siberian Branch,undefined
[4] Russian Academy of Science,undefined
[5] Vereshchagin Institute for High Pressure Physics,undefined
[6] Russian Academy of Science,undefined
来源
关键词
wollastonite; breyite; perovskite; larnite; mantle; density functional theory; quasi-harmonic approximation;
D O I
暂无
中图分类号
学科分类号
摘要
Phase relations in one of the key petrological systems, CaSiO3, have been comprehensively investigated for the first time in the pressure range 0–100 GPa and temperatures 0–2500 K within the density functional theory using the method of lattice dynamics in the quasi-harmonic approximation. The results showed that at atmospheric pressure and 0 K CaSiO3 is stable in the wollastonite structure, which above 1250 K transforms to the high-temperature pseudowollastonite modification. Above a pressure of 4 GPa, CaSiO3 is stable in the breyite structure. The phase equilibrium curve has a negative slope of dP/dT = –0.6 MPa/K. At 8 GPa, CaSiO3 decomposes into an assemblage of Ca2SiO4-larnite and titanite-structured CaSi2O5. The phase equilibrium curve has a positive slope of dP/dT = 1.35 MPa/K. At a pressure of 13 GPa, Ca2SiO4-larnite reacts with CaSi2O5, forming a phase with a perovskite-like structure – CaSiO3-perovskite. The pressure of this phase transition is practically independent of temperature. In the low-temperature region, Ca-perovskite is stable in the tetragonal modification CaSiO3-I4/mcm. Above 340 K at 13 GPa, Ca-perovskite is stable in the cubic modification CaSiO3-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Pm\bar {3}m.$$\end{document} The phase transition temperature increases to 755 K with pressure increase to 100 GPa. The thermodynamic parameters were also calculated for the first time for wollastonite, pseudowollastonite, and titanite-structured CaSi2O5.
引用
收藏
页码:791 / 800
页数:9
相关论文
共 50 条
  • [21] Hydroxyapatite formation on CaSiO3 ceramics in protein containing system
    Okada, K
    Siriphannon, P
    Kameshima, Y
    Yasumori, A
    Hayashi, S
    EURO CERAMICS VII, PT 1-3, 2002, 206-2 : 1551 - 1554
  • [22] Existence of a structural distortion in perovskite phase of CaSiO3 at high pressure
    Joshi, KD
    Gupta, SC
    Sikka, SK
    SOLID STATE PHYSICS, VOL 41, 1998, 1999, : 160 - 161
  • [23] Crystal structure of CaSiO3 perovskite at 28-62 GPa and 300 K under quasi-hydrostatic stress conditions
    Chen, Huawei
    Shim, Sang-Heon
    Leinenweber, Kurt
    Prakapenka, Vitali
    Meng, Yue
    Prescher, Clemens
    AMERICAN MINERALOGIST, 2018, 103 (03) : 462 - 468
  • [24] Phase stability and shear softening in CaSiO3 perovskite at high pressure
    Stixrude, Lars
    Lithgow-Bertelloni, C.
    Kiefer, B.
    Fumagalli, P.
    PHYSICAL REVIEW B, 2007, 75 (02):
  • [25] MELTING AND SUBSOLIDUS PHASE RELATIONSHIPS FOR CASIO3 TO 35 KILOBARS PRESSURE
    HUANG, WL
    WYLLIE, PJ
    AMERICAN MINERALOGIST, 1975, 60 (3-4) : 213 - 217
  • [26] Sound velocity measurements of CaSiO3 perovskite to 133 GPa and implications for lowermost mantle seismic anomalies
    Kudo, Yuki
    Hirose, Kei
    Murakami, Motohiko
    Asahara, Yuki
    Ozawa, Haruka
    Ohishi, Yasuo
    Hirao, Naohisa
    EARTH AND PLANETARY SCIENCE LETTERS, 2012, 349 : 1 - 7
  • [27] Phase relations of MgSiO3-FeSiO3 system up to 64 GPa and 2300 K using multianvil apparatus with sintered diamond anvils
    Arimoto, Takeshi
    Irifune, Tetsuo
    Nishi, Masayuki
    Tange, Yoshinori
    Kunimoto, Takehiro
    Liu, Zhaodong
    PHYSICS OF THE EARTH AND PLANETARY INTERIORS, 2019, 295
  • [28] Melting and subsolidus phase relations in the system K2CO3-MgCO3 at 3GPa
    Arefiev, Anton V.
    Shatskiy, Anton
    Podborodnikov, Ivan V.
    Litasov, Konstantin D.
    HIGH PRESSURE RESEARCH, 2018, 38 (04) : 422 - 439
  • [29] Calorimetric study of perovskite solid solutions in the CaSiO3–CaGeO3 system
    H. Kojitani
    A. Navrotsky
    M. Akaogi
    Physics and Chemistry of Minerals, 2001, 28 : 413 - 420
  • [30] Prediction of phase transition in CaSiO3 perovskite and implications for lower mantle structure
    Stixrude, L
    Cohen, RE
    Yu, RC
    Krakauer, H
    AMERICAN MINERALOGIST, 1996, 81 (9-10) : 1293 - 1296