wollastonite;
breyite;
perovskite;
larnite;
mantle;
density functional theory;
quasi-harmonic approximation;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Phase relations in one of the key petrological systems, CaSiO3, have been comprehensively investigated for the first time in the pressure range 0–100 GPa and temperatures 0–2500 K within the density functional theory using the method of lattice dynamics in the quasi-harmonic approximation. The results showed that at atmospheric pressure and 0 K CaSiO3 is stable in the wollastonite structure, which above 1250 K transforms to the high-temperature pseudowollastonite modification. Above a pressure of 4 GPa, CaSiO3 is stable in the breyite structure. The phase equilibrium curve has a negative slope of dP/dT = –0.6 MPa/K. At 8 GPa, CaSiO3 decomposes into an assemblage of Ca2SiO4-larnite and titanite-structured CaSi2O5. The phase equilibrium curve has a positive slope of dP/dT = 1.35 MPa/K. At a pressure of 13 GPa, Ca2SiO4-larnite reacts with CaSi2O5, forming a phase with a perovskite-like structure – CaSiO3-perovskite. The pressure of this phase transition is practically independent of temperature. In the low-temperature region, Ca-perovskite is stable in the tetragonal modification CaSiO3-I4/mcm. Above 340 K at 13 GPa, Ca-perovskite is stable in the cubic modification CaSiO3-\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$Pm\bar {3}m.$$\end{document} The phase transition temperature increases to 755 K with pressure increase to 100 GPa. The thermodynamic parameters were also calculated for the first time for wollastonite, pseudowollastonite, and titanite-structured CaSi2O5.
机构:
Ehime Univ, Geodynam Res Ctr, 2-5 Bunkyo, Matsuyama, Ehime 7908577, JapanEhime Univ, Geodynam Res Ctr, 2-5 Bunkyo, Matsuyama, Ehime 7908577, Japan
Nomura, Ryuichi
Zhou, Youmo
论文数: 0引用数: 0
h-index: 0
机构:
Ehime Univ, Geodynam Res Ctr, 2-5 Bunkyo, Matsuyama, Ehime 7908577, JapanEhime Univ, Geodynam Res Ctr, 2-5 Bunkyo, Matsuyama, Ehime 7908577, Japan
Zhou, Youmo
Irifune, Tetsuo
论文数: 0引用数: 0
h-index: 0
机构:
Ehime Univ, Geodynam Res Ctr, 2-5 Bunkyo, Matsuyama, Ehime 7908577, Japan
Tokyo Inst Technol, Earth Life Sci Inst, Meguro Ku, 2-12-1 Ookayama, Tokyo 1528550, JapanEhime Univ, Geodynam Res Ctr, 2-5 Bunkyo, Matsuyama, Ehime 7908577, Japan
机构:
Royal Inst Technol, Theory Mat Phys Dept, Stockholm Ctr Phys Astron & Biotechnol, SE-10691 Stockholm, SwedenRoyal Inst Technol, Theory Mat Phys Dept, Stockholm Ctr Phys Astron & Biotechnol, SE-10691 Stockholm, Sweden
Magyari-Köpe, B
Vitos, L
论文数: 0引用数: 0
h-index: 0
机构:
Royal Inst Technol, Theory Mat Phys Dept, Stockholm Ctr Phys Astron & Biotechnol, SE-10691 Stockholm, SwedenRoyal Inst Technol, Theory Mat Phys Dept, Stockholm Ctr Phys Astron & Biotechnol, SE-10691 Stockholm, Sweden
Vitos, L
Grimvall, G
论文数: 0引用数: 0
h-index: 0
机构:
Royal Inst Technol, Theory Mat Phys Dept, Stockholm Ctr Phys Astron & Biotechnol, SE-10691 Stockholm, SwedenRoyal Inst Technol, Theory Mat Phys Dept, Stockholm Ctr Phys Astron & Biotechnol, SE-10691 Stockholm, Sweden
Grimvall, G
Johansson, B
论文数: 0引用数: 0
h-index: 0
机构:
Royal Inst Technol, Theory Mat Phys Dept, Stockholm Ctr Phys Astron & Biotechnol, SE-10691 Stockholm, SwedenRoyal Inst Technol, Theory Mat Phys Dept, Stockholm Ctr Phys Astron & Biotechnol, SE-10691 Stockholm, Sweden
Johansson, B
Kollár, J
论文数: 0引用数: 0
h-index: 0
机构:
Royal Inst Technol, Theory Mat Phys Dept, Stockholm Ctr Phys Astron & Biotechnol, SE-10691 Stockholm, SwedenRoyal Inst Technol, Theory Mat Phys Dept, Stockholm Ctr Phys Astron & Biotechnol, SE-10691 Stockholm, Sweden