Boundedness Properties of Pseudo-Differential and Calderón-Zygmund Operators on Modulation Spaces

被引:0
|
作者
Mitsuru Sugimoto
Naohito Tomita
机构
[1] Osaka University,Department of Mathematics, Graduate School of Science
关键词
Calderón-Zygmund operators; Modulation spaces; Pseudo-differential operators; 42B20; 42B35; 47G30;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we study the boundedness of pseudo-differential operators with symbols in Sρ,δm on the modulation spaces Mp,q. We discuss the order m for the boundedness Op(Sρ,δm)⊂ℒ(Mp,q) to be true. We also prove the existence of a Calderón-Zygmund operator which is not bounded on the modulation space Mp,q with q≠2. This unboundedness is still true even if we assume a generalized T(1) condition. These results are induced by the unboundedness of pseudo-differential operators on Mp,q whose symbols are of the class S1,δ0 with 0<δ<1.
引用
收藏
页码:124 / 143
页数:19
相关论文
共 50 条
  • [11] The Boundedness for Commutators of Anisotropic Calderón-Zygmund Operators
    Jinxia Li
    Baode Li
    Jianxun He
    Acta Mathematica Scientia, 2020, 40 : 45 - 58
  • [12] Boundedness of Calderón-Zygmund operators on the Weighted Herz-Morrey Spaces
    REN Xiangju College of Mathematics and Computer ScienceAnhui Normal UniversityWuhu China
    巢湖学院学报, 2007, (03) : 6 - 10
  • [13] A counterexample for boundedness of pseudo-differential operators on modulation spaces
    Sugimoto, Mitsuru
    Tomita, Naohito
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (05) : 1681 - 1690
  • [14] Boundedness of Multilinear Pseudo-differential Operators on Modulation Spaces
    Molahajloo, Shahla
    Okoudjou, Kasso A.
    Pfander, Goetz E.
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2016, 22 (06) : 1381 - 1415
  • [15] Boundedness of Multilinear Pseudo-differential Operators on Modulation Spaces
    Shahla Molahajloo
    Kasso A. Okoudjou
    Götz E. Pfander
    Journal of Fourier Analysis and Applications, 2016, 22 : 1381 - 1415
  • [16] THE BOUNDEDNESS OF CALDERN-ZYGMUND OPERATORS ON HARDY SPACES HA~p AND ITS APPLICATIONS
    陆善镇
    杨大春
    ChineseScienceBulletin, 1992, (02) : 105 - 107
  • [17] Weighted Boundedness of Commutators of Generalized Calderón-Zygmund Operators
    Cuilan Wu
    Yunjie Wang
    Lisheng Shu
    Analysis in Theory and Applications, 2018, 34 (03) : 209 - 224
  • [18] Algebras of Calderón-Zygmund Operators on RD Spaces
    Wang, Dandan
    Fang, Qiquan
    Tao, Xiangxing
    Zheng, Taotao
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2024, 45 (02) : 83 - 102
  • [19] An Lq(Lp)-Theory for Parabolic Pseudo-Differential Equations: Calderón-Zygmund Approach
    Ildoo Kim
    Sungbin Lim
    Kyeong-Hun Kim
    Potential Analysis, 2016, 45 : 463 - 483
  • [20] Boundedness of Pseudo-Differential Operators on Lp, Sobolev and Modulation Spaces
    Molahajloo, S.
    Pfander, G. E.
    MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2013, 8 (01) : 175 - 192