The Boundedness for Commutators of Anisotropic Calderón-Zygmund Operators

被引:0
|
作者
Jinxia Li
Baode Li
Jianxun He
机构
[1] Guangzhou University,School of Mathematics and Information Sciences
[2] Xinjiang University,College of Mathematics and System Science
来源
Acta Mathematica Scientia | 2020年 / 40卷
关键词
expansive dilation; Muckenhoupt weight; weighted Hardy space; Calderón-Zygmund operator; commutator; 42B35; 46E30; 42B25; 42B30;
D O I
暂无
中图分类号
学科分类号
摘要
Let T be an anisotropic Calderón-Zygmund operator and φ : ℝn × [0, ∞) → [0, ∞) be an anisotropic Musielak-Orlicz function with φ(x, ·) being an Orlicz function and φ(·,t) being a Muckenhoupt A∞ (A) weight. In this paper, our goal is to study two boundedness theorems for commutators of anisotropic Calderón-Zygmund operators. Precisely, when b ∈ BMOw(ℝn, A) (a proper subspace of anisotropic bounded mean oscillation space BMO(ℝn, A)), the commutator [b, T] is bounded from anisotropic weighted Hardy space Hl(ℝn, A) to weighted Lebesgue space Lw1 (ℝn) and when b ∈ BMO(ℝn) (bounded mean oscillation space), the commutator [b, T] is bounded on Musielak-Orlicz space Lφ(ℝn), which are extensions of the isotropic setting.
引用
收藏
页码:45 / 58
页数:13
相关论文
共 50 条