Local existence for evolution equations with nonlocal term in time and singular initial data

被引:0
|
作者
Aldryn Aparcana
Ricardo Castillo
Omar Guzmán-Rea
Miguel Loayza
机构
[1] Universidad Nacional San Luis Gonzaga,Facultad de Ciencias
[2] Universidad del Bío-Bío,Departamento de Matemática
[3] Universidade Federal de Pernambuco - UFPE,Departamento de Matemática
关键词
Nonlocal parabolic equation; Fractional heat equation; Local existence; Nonexistence; Singular initial data; 35A01; 35B33; 35K55; 35K57; 35K58; 35R05;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the semilinear equation ut+(-Δ)α/2u=∫0tm(t,s)f(u(s))ds\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} u_t+(-\Delta )^{\alpha /2}u=\int \limits _0^t m(t,s) f(u(s)) \mathrm{d}s \end{aligned}$$\end{document}in Ω×(0,T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \times (0,T)$$\end{document}, where 0<α≤2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<\alpha \le 2$$\end{document}, m is a nonnegative and measurable homogeneous function defined on K={(t,s)∈R2,0<s<t}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {K}}= \{ (t,s) \in {\mathbb {R}}^2, 0<s<t \}$$\end{document}, f is a nonnegative, continuous and nondecreasing function and Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} is either a bounded smooth domain or the whole space RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^N$$\end{document}. Our goal is to determine conditions for the local existence and nonexistence of solutions with nonnegative initial data belonging to the space Lr(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^r(\Omega )$$\end{document}, 1≤r<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 \le r < \infty $$\end{document}.
引用
收藏
相关论文
共 50 条
  • [41] On local behavior of singular positive solutions to nonlocal elliptic equations
    Jin, Tianling
    de Queiroz, Olivaine S.
    Sire, Yannick
    Xiong, Jingang
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2017, 56 (01)
  • [42] On local behavior of singular positive solutions to nonlocal elliptic equations
    Tianling Jin
    Olivaine S. de Queiroz
    Yannick Sire
    Jingang Xiong
    Calculus of Variations and Partial Differential Equations, 2017, 56
  • [43] Existence of mild solutions for semilinear evolution equations with non-local initial conditions
    Liu, Qing
    Yuan, Rong
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (09) : 4177 - 4184
  • [44] On a class of multitime evolution equations with nonlocal initial conditions
    Zouyed, F.
    Rebbani, F.
    Boussetila, N.
    ABSTRACT AND APPLIED ANALYSIS, 2007,
  • [45] NONLINEAR RETARDED EVOLUTION EQUATIONS WITH NONLOCAL INITIAL CONDITIONS
    Vrabie, Ioan I.
    DYNAMIC SYSTEMS AND APPLICATIONS, 2012, 21 (2-3): : 417 - 439
  • [46] Existence for nonlinear evolution inclusions with nonlocal retarded initial conditions
    Vrabie, Ioan I.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (18) : 7047 - 7060
  • [47] Semilinear Delay Evolution Equations with Nonlocal Initial Conditions
    Vrabie, Ioan I.
    NEW PROSPECTS IN DIRECT, INVERSE AND CONTROL PROBLEMS FOR EVOLUTION EQUATIONS, 2014, 10 : 419 - 435
  • [48] Evolution equations with nonlocal initial conditions and superlinear growth
    Benedetti, Irene
    Ciani, Simone
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 318 : 270 - 297
  • [49] Viability for delay evolution equations with nonlocal initial conditions
    Necula, Mihai
    Popescu, Marius
    Vrabie, Ioan I.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 121 : 164 - 172
  • [50] SINGULAR SOLUTIONS FOR NONLOCAL SYSTEMS OF EVOLUTION EQUATIONS WITH VORTICITY STRETCHING
    Vu Hoang
    Radosz, Maria
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (02) : 2158 - 2178