Local existence for evolution equations with nonlocal term in time and singular initial data

被引:0
|
作者
Aldryn Aparcana
Ricardo Castillo
Omar Guzmán-Rea
Miguel Loayza
机构
[1] Universidad Nacional San Luis Gonzaga,Facultad de Ciencias
[2] Universidad del Bío-Bío,Departamento de Matemática
[3] Universidade Federal de Pernambuco - UFPE,Departamento de Matemática
关键词
Nonlocal parabolic equation; Fractional heat equation; Local existence; Nonexistence; Singular initial data; 35A01; 35B33; 35K55; 35K57; 35K58; 35R05;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the semilinear equation ut+(-Δ)α/2u=∫0tm(t,s)f(u(s))ds\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} u_t+(-\Delta )^{\alpha /2}u=\int \limits _0^t m(t,s) f(u(s)) \mathrm{d}s \end{aligned}$$\end{document}in Ω×(0,T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \times (0,T)$$\end{document}, where 0<α≤2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<\alpha \le 2$$\end{document}, m is a nonnegative and measurable homogeneous function defined on K={(t,s)∈R2,0<s<t}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {K}}= \{ (t,s) \in {\mathbb {R}}^2, 0<s<t \}$$\end{document}, f is a nonnegative, continuous and nondecreasing function and Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} is either a bounded smooth domain or the whole space RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^N$$\end{document}. Our goal is to determine conditions for the local existence and nonexistence of solutions with nonnegative initial data belonging to the space Lr(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^r(\Omega )$$\end{document}, 1≤r<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 \le r < \infty $$\end{document}.
引用
收藏
相关论文
共 50 条
  • [21] Coupling local and nonlocal evolution equations
    Alejandro Gárriz
    Fernando Quirós
    Julio D. Rossi
    Calculus of Variations and Partial Differential Equations, 2020, 59
  • [22] Coupling local and nonlocal evolution equations
    Garriz, Alejandro
    Quiros, Fernando
    Rossi, Julio D.
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2020, 59 (04)
  • [23] Mixing Local and Nonlocal Evolution Equations
    Monia Capanna
    Julio D. Rossi
    Mediterranean Journal of Mathematics, 2023, 20
  • [24] A class of stochastic nonlocal evolution equations with nonlocal initial conditions
    Liu, Yarong
    Wang, Yejuan
    Kloeden, Peter E.
    ANALYSIS AND APPLICATIONS, 2024, 22 (02) : 279 - 309
  • [25] Local and Nonlocal Singular Liouville Equations in Euclidean Spaces
    Hyder, Ali
    Mancini, Gabriele
    Martinazzi, Luca
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, 2021 (15) : 11393 - 11425
  • [26] Existence of mild solutions for a class of non-autonomous evolution equations with nonlocal initial conditions
    Jabeen, Tahira
    Lupulescu, Vasile
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (01): : 141 - 153
  • [28] Regularity for evolution equations with nonlocal initial conditions
    Chen, Pengyu
    Zhang, Xuping
    Li, Yongxiang
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2018, 112 (02) : 539 - 553
  • [29] Semilinear evolution equations with nonlocal initial conditions
    Boucherif, Abdelkader
    Precup, Radu
    DYNAMIC SYSTEMS AND APPLICATIONS, 2007, 16 (03): : 507 - 516
  • [30] Existence of Solutions in Some Interpolation Spaces for a Class of Semilinear Evolution Equations with Nonlocal Initial Conditions
    Chang, Jung-Chan
    Liu, Hsiang
    JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2013,